Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn thử tham khảo cách giải của mình nhé.
a) Từ B hạ BI vuông góc với DC. => ABID là hình vuông => ID = IC = AB = \(\frac{CD}{2}\)
=> I là trung điểm DC => BI là đường cao mà BI đồng thời là đường trung tuyến
Do đó \(\Delta\)BCD cân tại B.
* Vì AB // DC (do ABCD là hình thang vuông) => \(\widehat{ABD}\)= \(\widehat{BDI}\)= \(45\)độ.
Mà \(\Delta\) BCD cân tại B => \(\widehat{BDI}\)= \(\widehat{C}\)= 45 độ.
=> \(\widehat{DBC}\)= 90 độ. Vậy tam giác BCD vuông tại B.
b) CD = 6 cm => AB = AB = \(\frac{CD}{2}\)= \(\frac{6}{2}\)= 3 cm.
\(S_{ABCD}\)= (AB+CD) x AD : 2 = (3+6) x 3 : 2 = \(\frac{27}{2}\)= 13,5 (cm\(^2\))
a)Xét tam giác BDC và tam giác HBC có :
\(\widehat{DBC}=\widehat{BHC}\left(=90^o\right)\)
Chung \(\widehat{BCD}\)
\(\Rightarrow\) Tam giác BDC đồng dạng với tam giác HBC ( g-g )
b) Do tam giác BDC đồng dạng với tam giác HBC
\(\Rightarrow\frac{DC}{BC}=\frac{BC}{HC}\)
\(\Leftrightarrow\frac{25}{15}=\frac{15}{HC}\)
\(\Leftrightarrow HC=9\left(cm\right)\)
Ta có : \(HD+HC=DC\)
\(\Leftrightarrow HD+9=25\)
\(\Leftrightarrow HD=16\left(cm\right)\)
dễ thấy \(\Delta AOB\)=\(\Delta BOC\)=\(\Delta COD\)=\(\Delta DOA\)
=>diện tích tam giác AOB=8:4=2cm