Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Bình phương của mọi số thực đều nhỏ hơn hoặc bằng 0 (mệnh đề sai)
b) Có một số thực mà bình phương của nó nhỏ hơn hoặc bằng 0 (mệnh đề đúng)
c) Với mọi số thực \(x\) , \(\dfrac{x^2-1}{x-1}=x+1\) (mệnh đề sai)
d) Có một số thực \(x\), mà \(\dfrac{x^2-1}{x-1}=x+1\) (mênh đề đúng)
e) Với mọi số thực \(x\) , \(x^2+x+1>0\) (mệnh đề đúng)
f) Có một số thực \(x\) mà \(x^2+x+1>0\) (mệnh đề đúng)
a) với mọi x thuộc tập số thực thì x2 bé hơn hoặc bằng 0 (mệnh đề sai)
b) một vài x thuộc tập số thực thì x2 bé hơn hoặc bằng 0 (mệnh đề đúng)
c) với mọi x thuộc tập số thực thì \(\dfrac{x^2-1}{x-1}=x+1\) (mệnh đề sai)
d) một vài x thuộc tập số thực thì \(\dfrac{x^2-1}{x-1}=x+1\) (mệnh đề đúng)
e) với mọi x thuộc tập số thực thì \(x^2+x+1>0\) (mệnh đề đúng)
f) một vài x thuộc tập số thực thì \(x^2+x+1>0\) (mệnh đề đúng)
a) Có một số tự nhiên n không chia hết cho chính nó. Mệnh đề này đúng vì n=0 ∈ N, 0 không chia hết cho 0.
b) = "Bình phương của một số hữu tỉ là một số khác 2". Mệnh đề đúng.
c) = ∃x ∈ R: x≥x+1= "Tồn tại số thực x không nhỏ hơn số ấy cộng với 1". Mệnh đề này sai.
d) = ∀x ∈ R: 3x ≠ x2+1= "Tổng của 1 với bình phương của số thực x luôn luôn không bằng 3 lần số x"
Đây là mệnh đề sai vì với x= ta có :
3 =+1
a/ Sai vì vs \(x=1\) thì \(x^2=1=x\) (trái vs mệnh đề thứ 2)
b/ Sai vì các nghiệm của PT đều là số âm\(\ne\) N
c/ Đúng vì vs n= 1 thì \(n^2+2n+3=6\) (6 là hợp số)
d/ Sai vì vs x= \(-4< 3\Rightarrow16>9\)
a) Mệnh đề sai, vì \(x = 0 \in \mathbb{R}\) nhưng \({0^2}\) không lớn hơn 0.
Mệnh đề phủ định của mệnh đề này là: “\(\exists x \in \mathbb{R},{x^2} \le 0\)”
b) Mệnh đề đúng, vì \(x = 1 \in \mathbb{R}\) thỏa mãn \({1^2} = 5.1 - 4\)
Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{N},{x^2} \ne 5x - 4\)”
c) Mệnh đề sai, vì \(2x + 1 = 0 \Leftrightarrow x = - \frac{1}{2} \notin \mathbb{Z}\)
Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{Z},2x + 1 \ne 0\)”
a) ∀x ∈ R: x2>0= "Bình phương của một số thực là số dương". Sai vì 0∈R mà 02=0.
b) ∃ n ∈ N: n2=n = "Có số tự nhiên n bằng bình phương của nó". Đúng vì 1 ∈ N, 12=1.
c) ∀n ∈ N: n ≤ 2n = "Một số tự nhiên thì không lớn hơn hai lần số ấy". Đúng.
d) ∃ x∈R: x< = "Có số thực x nhỏ hơn nghịch đảo của nó". Mệnh đề đúng. chẳng hạn 0,5 ∈ R và 0,5 <.
\(\exists x\in R,x\le-2\Rightarrow x^2\le4\)
\(\exists x\in R,x\le2\Rightarrow x^2\le4\)
\(\exists x\in R,x^2\le4\Rightarrow x\le2\)
Cậu giúp mình xác định tính đúng sai của mệnh đề này với nha
Lập mệnh đề phủ định của các mệnh đề sau:
a) \(\forall x\in R,x>-2\Rightarrow x^2>4\)
b) \(\forall x\in R,x>2\Rightarrow x^2>4\)
c) \(\forall x\in R,x^2>4\Rightarrow x>2\)
d) \(\forall x\in N,x>2\Leftrightarrow x^2>4\)
Cảm on nhiều ạ
a) Mệnh đề sai, vì chỉ có \(x = - 3\) thảo mãn \(x + 3 = 0\) nhưng \( - 3 \notin \mathbb{N}\).
Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{N},x + 3 \ne 0\)”.
b) Mệnh đề đúng, vì \({(x - 1)^2} \ge 0\) hay\({x^2} + 1 \ge 2x\) với mọi số thực x.
Mệnh đề phủ định của mệnh đề này là: “\(\exists x \in \mathbb{R},{x^2} + 1 < 2x\)”
c) Mệnh đề sai, vì có \(a = - 2 \in \mathbb{R},\sqrt {{{( - 2)}^2}} = 2 \ne a\)
Mệnh đề phủ định của mệnh đề này là: “\(\exists a \in \mathbb{R},\sqrt {{a^2}} \ne a\)”.
1. Sai với \(x< 0\)
2. Sai với \(x=\pm2\)
3. Sai do \(x=\pm\sqrt{3}\notin\)
4. Đúng với \(x=0\Rightarrow x^2\le0\)
xét mệnh đề 1 ta có giả sử mệnh đề 1 là đúng thì
5x ≥ 4x ∀ x ϵ R
⇔ 5x - 4x ≥ 0 ⇔ x ≥ 0 ∀ R vô lý vì nếu x = -1 thì x < 0
vậy mệnh đề 1 là sai
xét mệnh đề 2, giả sử mệnh đề 2 là đúng thì ta có:
x2 - 4 ≠ 0 ∀ x ϵ R ⇔ (x-2)(x+2) # ∀ x ϵ R
vô lý vì x = +- 2 thì x2 - 4 = 0 vậy mệnh đề 2 là sai
xét mệnh đề 3 , giả sử mệnh đề 3 là đúng ta có :
x2 - 3 = 0 với x ϵ N
⇔ x2 = 3 + 0 ⇔ x2 = 3 vì x ϵ N nên x2 là một số chính phương mà số chính phương không thể có tận cùng bằng 3 , vậy mệnh đề 3 là sai
xét mệnh đề 4 ta có ∃ x ϵ R : x2 ≤ 0
vì x2 ≥ 0 mà x2 ≤ 0 đúng ⇔ x = 0 vậy tồn tại x = 0 để x2 ≤ 0
mệnh đề 4 là đúng