K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2020

c, Theo phần b có , tgiac AHD đồng dạng tgiac CED

=? HD/ED = AD/CD

 Xét tgiac HDE và tgiac ADC, có:

 góc HDE = góc ADC ( 2 góc đối đỉnh)

HD/ED = AD/ CD (cmt)

=> tg HDE đồng dậng tg ADC ( c.g.c)

d, Áp dụng định lý Pytago vào tg ABC , có:

BC^2 = AB^2 + AC^2 = 6^2 + 8^2

=>BC = 10 (cm)

Có : BA^2 = BH. BC

=> BH = 3,6 = HD

=> BD = 2BH = 7,2(cm)

=> DC = BC - BD = 2,8 (cm)

Chứng minh tgiac AHB = tg AHD (c.g.c)

=> AD = AB = 6 (cm)

theo phần b, tg CDE đồng dạng th ADH

=> Dc/DA = DE/DH

=> DE = 1,68

Áp dụng đính lý pytagp vào tg CED

=> DC^2 = EC^2 + De^2

=> EC = 2,24

=> Diện tích tam giác CED = 1/2 . DE .EC = 1,8816 (cm^2)

Bài làm

Mik nghĩ bbạn thiếu đề là AH đường cao, còn đúng hay sai thì mình không chắc vì nếu AH không là đường cao sẽ không làm được bài, 

a) Xét tam giác ABC và tam giác HBA có:

\(\widehat{AHB}=\widehat{BAC}=90^0\)

\(\widehat{ABC}\)chung

=> Tam giác ABC ~ Tam giác HBA ( g - g )

b) Xét tam giác AHD và tam giác CED có:

\(\widehat{AHD}=\widehat{CED}=90^0\)

\(\widehat{HDA}=\widehat{EDC}\)( hai góc đối đỉnh )

=> Tam giác AHD ~ Tam giác CED ( g - g )

=> \(\frac{AH}{EC}=\frac{AD}{DC}\)

\(\Rightarrow AH.CD=AD.EC\)( đpcm )

c) Vì tam giác AHD ~ Tam giác CED ( cmt )

=> \(\frac{HD}{DE}=\frac{AD}{DC}\)

Xét tam giác HDE và tam giác ADC có:

\(\frac{HD}{DE}=\frac{AD}{DC}\)( cmt )

\(\widehat{HDE}=\widehat{ADC}\)( hai góc đối đỉnh )

=> Tam giác HDE ~ tam giác ADC ( g - c - g )

d) Xét tam giác ABC vuông ở A có:

Theo Pytago có:

BC2 = AB2 + AC2 

hay BC2 = 62 + 82 

=> BC2 = 36 + 64

=> BC2 = 100

=> BC = 10 ( cm )

Diện tích tam giác ABC là:

SABC = 1/2 . AB . AC

SABC = 1/2 . AH . BC

=> AB . AC = AH . BC

hay 6 . 8 = AH . 10

=> AH = 4,8 ( cm )

Xét tam giác AHC vuông ở H có:

Theo pytago có:

HC2 = AC2 - AH2 

hay HC2 = 82 - 4,82 

=> HC2 = 64 - 23,04

=> HC = 6,4 ( cm )

Ta có: BH + HD + DC = BC

=> HD + HD + DC = BC

=> 2HD + HC - HD = BC

Hay 2HD + 6,4 - HD = 10

=> HD + 6,4 =10

=> HD = 3,6 ( cm )

Ta có: HD + DC = HC 

hay 3,6 + DC = 6,4

=> DC = 2,8

Vì D đối xứng với B qua H

=> AH là trung trực của DB

=> AB = AD

=> Tam giác ABD cân tại A

=> AB = AD = 6 cm 

vì tam giác AHD ~ tam giác CED ( theo câu b )

=> \(\frac{HD}{DE}=\frac{AH}{EC}=\frac{AD}{DC}\)

hay \(\frac{3,6}{DE}=\frac{4,8}{EC}=\frac{6}{2,8}\)

=> EC = 4,8 . 2,8 : 6 = 2,24 ( cm )

=> DE = 3,6 . 2,24 : 4,8 = 1,68 ( cm )

Diện tích tam giác DEC là:

SDEC = 1/2 . EC . DE = 1/2 . 2,24 . 1,68 = 1,8816 ( cm2 )

e) CHo mình xin nghỉ. 

Bài 6: Tam giác ABC cân tại A, BC = 120cm, AB = 100cm.Các đường cao AD và BE gặp nhau ở H.a) Tìm các tam giác đồng dạng với tam giác BDH.b).Tính độ dài HD, BHc).Tính độ dài HEBài 7: Cho tam giác ABC, các đường cao BD, CE cắt nhau ở H. Gọi K là hình chiếu của H trên BC.Chứng minh rằng:a) BH.BD = BK.BCb)CH.CE = CK.CBc) Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở Q ; M là trung...
Đọc tiếp

Bài 6: Tam giác ABC cân tại A, BC = 120cm, AB = 100cm.Các đường cao AD và BE gặp nhau ở H.

a) Tìm các tam giác đồng dạng với tam giác BDH.

b).Tính độ dài HD, BH

c).Tính độ dài HE

Bài 7: Cho tam giác ABC, các đường cao BD, CE cắt nhau ở H. Gọi K là hình chiếu của H trên BC.Chứng minh rằng:

a) BH.BD = BK.BC

b)CH.CE = CK.CB

c) Đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau ở Q ; M là trung điểm của BC.Chứng minh: H ; M ; Q thẳng hàng.

Bài 8 :  Cho tam giác ABC cân tại A ; trên BC lấy điểm M , vẽ ME ; MF vuông góc với AC ; A
B.kẻ đường cao CH. Chứng minh:

a) Tam giác BFM đồng dạng với tam giác CEM.

b) Tam giác BHC và tam giác CEM đồng dạng.

c) ME + MF không đổi khi M di động trên BC.

Bài 9:  Cho hình hộp chữ nhật ABCDA’B’C’D’ có AB = 10cm  ; BC = 20 cm  ; AA’  = 15cm.

a)   Tính thể tích hình hộp chữ nhật.

b) Tính độ dài đường chéo AC’ của hình hộp chữ nhật.

Bài 10: Cho hình chóp tứ giác đều S .ABCD có cạnh đáy AB = 10 cm ; cạnh bên SA = 12 cm.

Tính :  a) Đường chéo AC

b) Tính đường cao SO và thể tích hình chóp.

0
6 tháng 1 2018

a)Xét tam giác BDH và tam giác BEC có: góc B chung ; góc BDH = góc BEC = 90

=> tam giác BDH đồng dạng với tam giác BEC (g-g)

=> BD/BE = BH/BC => BD/BH = BE/BC

Xét tam giác BED và tam giác BCH có: góc B chung; BD/BH = BE/BC (cmt)

=> tam giác BED đồng dạng với tam giác BCH (c-g-c)

b)Xét tam giác BFH và tam giác CEH có: BFH = CEH = 90; BHF = CHE (đối đỉnh)

=> tam giác BFH đồng dạng với tam giác CEH (g-g)

=> FH/EH = BH/CH => FH/BH = EH/CH

Xét tam giác FEH và tam giác BCH có: FHE = BHC (đối đỉnh); FH/BH = EH/CH (cmt)

=> tam giác FEH đồng dạng với tam giác BCH (c-g-c)

=> FEH = BCH hay MEH = BCH(1)

VÌ tam giác BED đồng dạng với tam giác BCH (cmt) => BED = BCH hay HEN = BCH(2)

 Từ (1),(2)=> MEH = HEN

Xét tam giác MHE và tam giác NHE có: HME = HNE =90; HE chung ; MEH = NEH(cmt)

=> tam giác MHE bằng tam giác NHE (ch-gn)

=> HM = HN(2 cạnh tương ứng)

còn câu c) mình chưa làm được, bạn làm được chưa ? làm giùm  mình với

Câu 1: Cho tam giác ABC vuông tại A ,đường cao AH a) Cho biết HB=9cm,HC=16cm.Tính các độ dài AH,AB=AC b) Chứng minh các hệ thức AH2=HB.HC,AB2=BC.BH Câu 2: Tam giác ABC vuông tại A, đường cao AH, HB=4cm,HC=9cm.Gọi M là trung điểm của BC. Tính các cạnh của tam giác AHM .Câu3: Cho tam giác ABC vuông tại A . Hình vuông MNPQ có M thuộc cạnh AB,N thuộc cạnh AC ,P và Q thuộc cạnh BC . Biết BQ=4cm,CP=9cm. Tính cạnh của...
Đọc tiếp

Câu 1: Cho tam giác ABC vuông tại A ,đường cao AH 

a) Cho biết HB=9cm,HC=16cm.Tính các độ dài AH,AB=AC 

b) Chứng minh các hệ thức AH2=HB.HC,AB2=BC.BH 

Câu 2: Tam giác ABC vuông tại A, đường cao AH, HB=4cm,HC=9cm.Gọi M là trung điểm của BC. Tính các cạnh của tam giác AHM .

Câu3: Cho tam giác ABC vuông tại A . Hình vuông MNPQ có M thuộc cạnh AB,N thuộc cạnh AC ,P và Q thuộc cạnh BC . Biết BQ=4cm,CP=9cm. Tính cạnh của hình vuông. 

Câu 4: Tam giác ABC đường cao AH (H thuộc cạnh BC) có AH=6cm,BH=4cm,HC=9cm. Chứng minh rằng: 

a) Tam giác AHB đồng dạng với tam giác CHA .

b) BAC = 90o 

Câu 5: Cho tam giác ABC, các đường cao BD và CE. Chứng minh rằng : AE.AB=AD.AC 

Câu 6: Cho hình thang ABCD (AB//CD) , M là trung điểm của AD,H là hình chiếu của M ten BC. Chứng minh rằng:Diện tích hình thang bằng tích BC.MH bằng cách vẽ đường cao BK, gọi N là trung điểm của BC và tìm các tam giác đồng dạng 

Câu 7: Cho tam giác nhọn ABC , các đường cao BD và CE cắt nhau ở H . Gọi K là hình chiếu của H trên BC . Chứng minh rằng : 

a) BH.BD=BK.BC

b) CH.CE=CK.CB

c) BH.BD+CH.CE=BC2 

Câu 8: Cho hình bình hành ABCD (A<B) . Gọi E là hình chiếu của C trên AB, K là hình chiếu của C trên AD, H là hình chiếu của B trên AC. Chứng minh rằng : 

a) AB.AE=AC.HC

b) BC. AK=AC.HC

c) AB.AE+AD.AK=AC2 

3
13 tháng 7 2015

sao nhiều quá vậy cậu dăng như này nhìn đã thấy ngán rồi chẳng ai làm đâu

19 tháng 6 2016

nhieu