Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
http://d.violet.vn/uploads/resources/511/507795/preview.swf
BÀI 6
Gọi 4 stn liên tiếp đó là:
a,a+1,a+2,a+3 ( a E N)
a có dạng: 4k;4k+1;4k+2;4k+3 (k E N)
+) a=4k thì chắc chắn sẽ chia hết cho 4
+) a=4k+1=> a+3=4k+3+1=4k+4 chia hết cho 4
+) a=4k+2=> a+2=4k+2+2=4k+4 chia hết cho 4
+) a=4k+3=> a+1=4k+3+1=4k+4 chia hết cho 4
Vậy trong 4 stn liên tiếp luôn có 1 số chia hết cho 4(ĐPCM)
Nhận xét: 4p - 1; 4p; 4p + 1 là 3 số tự nhiên liên tiếp Nên có 1 số trong 3 số đó chia hết cho 3
Vì p là số nguyên tố > 3; 4 không chia hết cho 3 nên 4p không chia hết cho 3
=> 4p - 1 hoặc 4p + 1 chia hết cho 3
=> ít nhất trong hai số 4p - 1 ; 4p + 1 là hợp số.
giải
Vì p là số nguyên tố > 3; 4 không chia hết cho 3 nên 4p không chia hết cho 3
=> 4p - 1 hoặc 4p + 1 chia hết cho 3
Vậy ít nhất trong hai số 4p - 1 ; 4p + 1 là hợp số.
hok tốt
Ta có: (4p-1)+(4p+1)=(4p+4p)-(1+1)=8p
Vì 8p là hợp số nên (4p-1)+(4p+1) là hợp số
nên 1 trong 2 số hạng (4p-1) hoặc (4p+1) là hợp số
(chị k chắc mấy, nhưng chị k dùng cách của e)