Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(A\)là 1 số nguyên
\(\Leftrightarrow x-5⋮x-4\)
\(\Leftrightarrow x-4-1⋮x-4\)
Mà \(x-4⋮x-4\)
\(\Rightarrow1⋮x-4\)
\(\Leftrightarrow x-4\inƯ\left(1\right)=\left\{1;-1\right\}\)
\(\Leftrightarrow x\in\left\{5;3\right\}\)
\(ĐK:x\ne1\)
Để \(A=\frac{5}{x-1}\)là số nguyên
\(\Leftrightarrow5⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Leftrightarrow x\in\left\{0;2;-4;6\right\}\)
Để \(B=\frac{x+2}{x-1}\)là số nguyên
\(\Leftrightarrow x+2⋮x-1\)
\(\Leftrightarrow x-1+3⋮x-1\)
\(\Leftrightarrow3⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow x\in\left\{0;2;-2;4\right\}\)
Vậy để A và B cùng là số nguyên thì \(x\in\left\{0;2\right\}\)
Trả lời :
Mình làm thế này nè sai thì thuii nhé :)
a ) Để \(\frac{5}{x-1}\) \(\varepsilon\) \(ℤ\) thì => 5 phải chia hết cho ( x-1 ) hay x - 1 = Ư(5) = { - 1 ; 1 ; 5 ; -5 }
Ta có bảng sau :
x-1 | -5 | -1 | 1 | 5 |
x | -4 | 0 | 2 | 6 |
b ) Để \(\frac{x+2}{x-1}\) \(\varepsilon\) \(ℤ\) thì \(\frac{3}{x-2}\) phải \(\varepsilon\) \(ℤ\) => 3 phải chia hết cho ( x - 1 ) và x \(\ne\) 1
+ => x - 1 = Ư(3) = { 1 ; - 1 ; 3 ; -3 }
Chúc bạn học tốt <3
Cách 1 :
\(A=\left(6-\frac{2}{3}+\frac{1}{2}\right)-\left(5+\frac{5}{3}-\frac{3}{2}\right)-\left(3-\frac{7}{3}+\frac{5}{2}\right)\)
\(\Rightarrow A=6-\frac{2}{3}+\frac{1}{2}-5-\frac{5}{3}+\frac{3}{2}-3+\frac{7}{3}-\frac{5}{2}\)
\(\Rightarrow A=\left(6-5-3\right)+\left(\frac{7}{3}-\frac{2}{3}-\frac{5}{3}\right)+\left(\frac{1}{2}+\frac{3}{2}-\frac{5}{2}\right)\)
\(\Rightarrow A=-2+0+-\frac{1}{2}\)
\(\Rightarrow A=-2+\frac{-1}{2}\)
\(\Rightarrow A=-\frac{5}{2}\)
Cách 2 :
\(=\left(\frac{36}{6}-\frac{4}{6}+\frac{3}{6}\right)-\left(\frac{30}{6}+\frac{10}{6}-\frac{9}{6}\right)-\left(\frac{18}{6}-\frac{14}{6}+\frac{15}{6}\right)\)
\(=\frac{35}{6}-\frac{31}{6}-\frac{19}{6}\)
\(=-\frac{15}{6}\)
\(=-\frac{5}{2}\)
~
Bài 1:
a) ta có: \(A=\frac{2n-1}{n-3}=\frac{2n-6+5}{n-3}=\frac{2.\left(n-3\right)+5}{n-3}=\frac{2.\left(n-3\right)}{n-3}+\frac{5}{n-3}\)\(=2+\frac{5}{n-3}\)
Để A có giá trị nguyên
\(\Rightarrow\frac{5}{n-3}\in z\)
\(\Rightarrow5⋮n-3\Rightarrow n-3\inƯ_{\left(5\right)}=\left(5;-5;1;-1\right)\)
nếu n-3 = 5 => n = 8 (TM)
n-3 = -5 => n= -2 (TM)
n-3 = 1 => n = 4 (TM)
n-3 = -1 => n = 2 (TM)
KL: \(n\in\left(8;-2;4;2\right)\)
b) ta có: \(A=2+\frac{5}{n-3}\) ( pa)
Để A đạt giá trị lớn nhất
=> \(\frac{5}{n-3}\le5\)
Dấu "=" xảy ra khi
\(\frac{5}{n-3}=5\)
\(\Rightarrow n-3=5:5\)
\(n-3=1\)
\(n=4\)
KL: n =4 để A đạt giá trị lớn nhất
Bài 2 bn làm tương tự nha!
Q nguyên khi :
3|n| + 1 ⋮ 3|n| + 1
=> 3|n| - 1 + 2 ⋮ 3|n| + 1
=> 2 ⋮ 3|n| + 1
=> 3|n| + 1 thuộc Ư(2) mà n là số nguyên
=> 3|n| + 1 thuộc {-1; 1; -2; 2}
=> 3|n| thuộc {-2; 0; -3; 1}
=> |n| thuộc {0; -1} vì |n| > 0
=> n = 0
vậy_
a) Điều kiện để A có nghĩa : \(x\ne1\)và \(x\ne2\)
\(A=\frac{1}{x-1}:\frac{x-2}{2\left(x-1\right)}=\frac{1}{x-1}.\frac{2\left(x-1\right)}{x-2}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x-2\right)}=\frac{2}{x-2}\)
b) Để A có giá trị nguyên thì \(\frac{2}{x-2}\inℤ\)\(\Rightarrow2⋮\left(x-2\right)\)
\(\Rightarrow x-2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)\(\Rightarrow x\in\left\{0;1;3;4\right\}\)
mà \(x\ne1\)\(\Rightarrow x\in\left\{0;3;4\right\}\)
Vậy \(A\inℤ\Leftrightarrow x\in\left\{0;3;4\right\}\)
3a+5/a+3 la so nguyen
=>3a+5 chia het cho a+3
=>3(a+3)-4 chia het cho a+3
=>-4 chia het cho a+3
=>a+3 E Ư(-4)={-1;1;-2;2;-4;4}
=>a E {-4;-2;-5;-1;-7;1}
Tick nhé