Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) điều kiện xác định : \(x\ge1\)
ta có : \(\sqrt{\dfrac{x-1}{4}}-3=\sqrt{\dfrac{4x-4}{9}}\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-3=\dfrac{2}{3}\sqrt{x-1}\)
\(\Leftrightarrow\dfrac{1}{6}\sqrt{x-1}=-3\left(vôlí\right)\) vậy phương trình vô nghiệm
b) điều kiện xác định \(x\ge3\)
ta có : \(\sqrt{x^2-4x+4}+\sqrt{x^2+6x+9}=x-3\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}+\sqrt{\left(x+3\right)^2}=x-3\) \(\Leftrightarrow\left|x-2\right|+\left|x+3\right|=x-3\)
\(\Leftrightarrow x-2+x+3=x-3\Leftrightarrow x=-4\left(L\right)\) vậy phương trình vô nghiệm
c) điều kiện xác định : \(\left[{}\begin{matrix}x\ge\dfrac{3}{2}\\x< 1\end{matrix}\right.\)
ta có : \(\sqrt{\dfrac{2x-3}{x-1}}=2\) \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\Leftrightarrow2x-3=4x-4\)
\(\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\left(tmđk\right)\) vậy \(x=\dfrac{1}{2}\)
a: \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\)
=>4x-4=2x-3
=>2x=1
hay x=1/2
b: \(\Leftrightarrow\sqrt{\dfrac{2x-3}{x-1}}=2\)
=>(2x-3)=4x-4
=>4x-4=2x-3
=>2x=1
hay x=1/2(nhận)
c: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)
=>2x+3=0 hoặc 2x-3=4
=>x=-3/2 hoặc x=7/2
e: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
=>căn (x-5)=2
=>x-5=4
hay x=9
2. ĐK: \(x\ge0\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x}\ge0\\b=\sqrt{x^2+4}\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=2a^2\\x^2+4=b^2\\3\sqrt{x^3+4x}=3ab\end{matrix}\right.\)
pt trên được viết lại thành
\(2a^2+b^2-3ab=0\)
\(\Leftrightarrow\left(a-b\right)\left(2a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=\dfrac{1}{2}b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\sqrt{x^2+4}\\\sqrt{x}=\dfrac{1}{2}\sqrt{x^2+4}\end{matrix}\right.\)
Đến đây dễ rồi nhé ^^
b)\(\left(x+3\right)\sqrt{10-x^2}=x^2-x-12\)
Đk:\(-\sqrt{10}\le x\le\sqrt{10}\)
\(pt\Leftrightarrow\left(x+3\right)\sqrt{10-x^2}=\left(x-4\right)\left(x+3\right)\)
\(\Leftrightarrow\left(x+3\right)\sqrt{10-x^2}-\left(x-4\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(\sqrt{10-x^2}-\left(x-4\right)\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+3}=0\\\sqrt{10-x^2}=x-4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x+3=0\\10-x^2=x^2-8x+16\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\-2x^2+8x-6=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-3\\-\left(x-1\right)\left(x-3\right)=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow x=-3\) (thỏa)
c)\(\sqrt{\dfrac{x^3+1}{x+3}}+\sqrt{x+3}=\sqrt{x^2-x+1}+\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{\dfrac{\left(x+1\right)\left(x^2-x+1\right)}{x+3}}+\sqrt{x+3}-\sqrt{x^2-x+1}-\sqrt{x+1}=0\)
Đặt \(\sqrt{x^2-x+1}=a;\sqrt{x+1}=b;\sqrt{x+3}=c\left(a,b,c>0\right)\)
\(\Leftrightarrow\dfrac{ab}{c}+c-a-b=0\)
\(\Leftrightarrow\dfrac{\left(a-c\right)\left(b-c\right)}{c}=0\)
\(\Leftrightarrow\left(a-c\right)\left(b-c\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a-c=0\\b-c=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}a=c\\b=c\end{matrix}\right.\)
*)Xét \(a=c\)\(\Rightarrow\sqrt{x^2-x+1}=\sqrt{x+3}\)
\(\Rightarrow x^2-x+1=x+3\Rightarrow x=\dfrac{2\pm\sqrt{12}}{2}\) (thỏa)
*)Xét \(b=c\)\(\Rightarrow\sqrt{x+1}=\sqrt{x+3}\)
\(\Rightarrow x+1=x+3\Rightarrow-2=0\) (loại)
\(\Leftrightarrow4\left(x+1\right)+\sqrt{2\left(x+1\right)^2+\left(x^2+1\right)}-3\sqrt{x^2+1}=0\)
\(a=x+1;\text{ }b=\sqrt{x^2+1}\)
\(\Rightarrow4a-3b+\sqrt{2a^2+b^2}=0\Leftrightarrow3b-4a=\sqrt{2a^2+b^2}\)
\(\Rightarrow\left(3b-4a\right)^2=2a^2+b^2\Leftrightarrow7\left(\frac{a}{b}\right)^2-12\frac{a}{b}+4=0\)
\(\Leftrightarrow\frac{a}{b}=\frac{6\pm2\sqrt{2}}{7}\)
Khá xấu nhưng vẫn giải được nhé. Bạn kiểm tra lại ở trên rồi tính toán nốt.
\(A=3\sqrt{8}-\sqrt{50}-\sqrt{\sqrt{2}-1}\)
\(\Leftrightarrow6\sqrt{2}-5\sqrt{2}-\sqrt{\sqrt{2}-1}\)
\(\Leftrightarrow\sqrt{2}-\sqrt{\sqrt{2}-1}\)
\(B=2.\dfrac{2}{x-1}.\sqrt{\dfrac{x^2-2x+1}{4x^2}}\)
\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{\sqrt{x^2-2x+1}}{2x}\)
\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{\sqrt{\left(x-1\right)^2}}{x}\)
\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{x-1}{x}\)
\(\Leftrightarrow\)\(2.\dfrac{1}{x}\)
\(\Leftrightarrow\)\(\dfrac{2}{x}\)
\(a,\sqrt{2x+5}=\sqrt{1-x}\)
\(\Rightarrow2x+5=1-x\)
\(2x+x=1-5\)
\(3x=-4\Leftrightarrow x=\frac{-4}{3}\)
Vậy \(S=\left\{-\frac{4}{3}\right\}\)thuộc tập nghiệm của pt trên
Tham khảo:
Giải phương trình: \(\sqrt{12-\dfrac{3}{x^2}}+\sqrt{4x^2-\dfrac{3}{x^2}}=4x^2\) - Hoc24