K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2020

\(ĐKXĐ:\frac{-1}{4}\le x\le3\)

\(PT\Leftrightarrow3x+14-6\sqrt{4x+1}-2\sqrt{3-x}=0\)

\(\Leftrightarrow\left(4x+1\right)-2.3\sqrt{4x+1}+9+\left(3-x\right)-3\sqrt{3-x}+1=0\)

\(\Leftrightarrow\left(\sqrt{4x+1}-3\right)^2+\left(\sqrt{3-x}-1\right)^2=0\)(1)

Mà \(\left(\sqrt{4x+1}-3\right)^2\ge0\forall x\);\(\left(\sqrt{3-x}-1\right)^2\ge0\forall x\)

\(\Rightarrow\)(1) xảy ra khi \(\hept{\begin{cases}\sqrt{4x+1}=3\\\sqrt{3-x}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4x+1=9\\3-x=1\end{cases}}\Rightarrow x=2\left(tmđk\right)\)

Vậy nghiệm duy nhất của phương trình là 2

17 tháng 12 2019

\(6\sqrt[]{4x+1}+2\sqrt[]{3-x}=3x+14\)

22 tháng 5 2019

Em không chắc đâu ạ. Nhận thấy x = 2 là nghiệm của phương trình,ta biến đổi như sau:

ĐKXĐ: \(1\le x\le3\)

\(PT\Leftrightarrow x^2-4x+6+\left(x-1-\sqrt{x-1}\right)+\left(x-1-\sqrt{3-x}\right)-2x+2=0\)

\(\Leftrightarrow x^2-6x+8+\frac{\left(x-1\right)^2-\left(x-1\right)}{\left(x-1\right)+\sqrt{x-1}}+\frac{\left(x-1\right)^2-\left(3-x\right)}{\left(x-1\right)+\sqrt{3-x}}=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-2\right)+\frac{x^2-3x+2}{\left(x-1\right)+\sqrt{x-1}}+\frac{x^2-x-2}{\left(x-1\right)+\sqrt{3-x}}=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-2\right)+\frac{\left(x-2\right)\left(x-1\right)}{\left(x-1\right)+\sqrt{x-1}}+\frac{\left(x-2\right)\left(x+1\right)}{\left(x-1\right)+\sqrt{3-x}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4+\frac{x-1}{\left(x-1\right)+\sqrt{x-1}}+\frac{x+1}{\left(x-1\right)+\sqrt{3-x}}\right)=0\)

\(\Leftrightarrow x=2\)(chỗ này em không biết giải rõ ra thế nào nữa,chỉ biết x = 2 là nghiệm của cả hai cái ngoặc.Nhờ các anh chị chỉ rõ ra bước này giúp em ạ.Em cảm ơn)

22 tháng 5 2019

ĐKXĐ \(1\le x\le3\)

áp dụng Cauchy ngược dấu 

\(\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\)

\(\sqrt{\left(3-x\right).1}\le\frac{3-x+1}{2}=\frac{-x}{2}+2\)

\(\Rightarrow\sqrt{x-1}+\sqrt{3-x}\le\frac{x}{2}+\frac{-x}{2}+2=2\)

Theo giả thiết \(\sqrt{x-1}+\sqrt{3-x}=x^2-4x+6\)

\(\Rightarrow x^2-4x+6\le2\Leftrightarrow x^2-4x+4\le0\Leftrightarrow\left(x-2\right)^2\le0\)

Mà \(\left(x-2\right)^2\ge0\forall x\Rightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\left(TMĐK\right)\)

Vậy phương trình đã cho có nghiệm duy nhất x=2

26 tháng 7 2015

a/ \(x^2+4x+5=2\sqrt{2x+3}\)

ĐK: \(x\ge-\frac{3}{2}\)

Cách 1:

Đặt \(\sqrt{2x+3}=y+2\text{ (}y\ge-2\text{)}\Rightarrow\left(y+2\right)^2=2x+3\text{ (1)}\)

Pt đã cho trở thành \(\left(x+2\right)^2+1=2\left(y+2\right)\Leftrightarrow\left(x+2\right)^2=2y+3\text{ (2)}\)

\(\left(2\right)-\left(1\right)\Rightarrow\left(x+2\right)^2-\left(y+2\right)^2=2\left(y-x\right)\Leftrightarrow\left(x-y\right)\left(x+y+6\right)=0\)

\(\Leftrightarrow x=y\text{ }\left(\text{do }x\ge-\frac{3}{2};\text{ }y\ge-2\text{ nên }x+y+6\ge-\frac{3}{2}-2+6>0\right)\)

Do đó, phương trình đã cho tương tương:

\(x=\sqrt{2x+3}-2\Leftrightarrow x+2=\sqrt{2x+3}\Leftrightarrow\left(x+2\right)^2=2x+3\)

\(\Leftrightarrow x^2+2x+1=0\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Kết luận: \(x=-1.\)

Cách 2:

\(pt\Leftrightarrow\frac{1}{4}\left(2x+3\right)^2+\frac{1}{2}\left(2x+3\right)+\frac{5}{4}=2\sqrt{2x+3}\)

Đặt \(t=\sqrt{2x+3};\text{ }t\ge0\)

pt thành \(\frac{1}{4}t^4+\frac{1}{2}t^3+\frac{5}{4}=2t\Leftrightarrow\left(t-1\right)^2\left(t^2+2t+5\right)=0\)

\(\Leftrightarrow t-1=0\text{ }\left(\text{do }t^2+2t+5=\left(t+1\right)^2+4>0\right)\)

\(\Leftrightarrow t=1\)

Do đó, phương trình đã cho tương đương:

\(\sqrt{2x+3}=1\Leftrightarrow x=-1\)

Kết luận: \(x=-1.\)

Cách 3:

\(pt\Leftrightarrow\left(x^2+2x+1\right)+\left[\left(2x+3\right)-2\sqrt{2x+3}+1\right]=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2=0\)

\(\Leftrightarrow x+1=0\text{ và }\sqrt{2x+3}-1=0\)

\(\Leftrightarrow x=-1\)

Kết luận: \(x=-1.\)

 

b/ \(2\left(x^2-3x+2\right)=3\sqrt{x^3+8}\)

ĐK: \(x\ge-2\)

\(pt\Leftrightarrow2\left(x^2-2x+4\right)-2\left(x+2\right)=3\sqrt{x+2}.\sqrt{x^2-2x+4}\)

Đặt \(a=\sqrt{x^2-2x+4};\text{ }b=\sqrt{x+2}\left(a>0;\text{ }b\ge0\right)\)

Pt thành: \(2a^2-2b^2=3ab\Leftrightarrow\left(a-2b\right)\left(2a+b\right)=0\)

\(\Leftrightarrow a=2b\text{ }\left(\text{do }a>0;\text{ }b\ge0\text{ nên }2a+b>0\right)\)

Pt đã cho tương đương: \(\sqrt{x^2-2x+4}=2\sqrt{x+2}\Leftrightarrow x^2-2x+4=4\left(x+2\right)\)

\(\Leftrightarrow x^2-6x-4=0\Leftrightarrow x=3+\sqrt{13}\text{ hoặc }x=3-\sqrt{13}\)

Kết luận: \(x=3+\sqrt{13};\text{ }x=3-\sqrt{13}\)