K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2020

\(\frac{\left(x-2\right)^2}{12}-\frac{\left(x+1\right)^2}{21}=\frac{\left(x-4\right)\left(x-6\right)}{28}\)

<=> \(\frac{7\left(x^2-4x+4\right)}{84}-\frac{4\left(x^2+2x+1\right)}{84}=\frac{3\left(x^2-10x+24\right)}{84}\)

<=> 7x2 - 28x + 28 - 4x2 - 8x - 4 = 3x2 - 30x + 72

<=> 3x^2 - 36x - 3x^2 + 30x = 72 - 24

<=> -6x = 48

<=> x = -8

Vậy S = {-8}

25 tháng 2 2020

ĐKXĐ : \(x\ne2,x\ne4\)

Pt \(\Leftrightarrow\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}-12\left(\frac{x-2}{x-4}\right)^2=0\) (2)

Đặt  \(\frac{x+1}{x-2}=a,\frac{x-2}{x-4}=b\Rightarrow ab=\frac{x+1}{x-4}\)

Khi đó pt (2) trở thành :

\(a^2+ab-12b=0\)

\(\Leftrightarrow a^2-3ab+4ab-12b=0\)

\(\Leftrightarrow a\left(a-3b\right)+4b\left(a-3b\right)=0\)

\(\Leftrightarrow\left(a-3b\right)\left(a+4b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=3b\\a=-4b\end{cases}}\)

Bạn thay vào tính, được nghiệm là \(S=\left\{3,\frac{4}{3}\right\}\)

27 tháng 3 2020

\(\left(x-3\right)^3-2\left(x-1\right)=x\left(x-2\right)^2-5x^2\)

\(\Leftrightarrow x^3-9x^2+27x-27-2x+2=x^3-4x^2+4x-5x^2\)

\(\Leftrightarrow27x-2x-4x-27+2=0\)

\(\Leftrightarrow21x=25\)

\(\Leftrightarrow x=\frac{25}{21}\)

Hết ý tưởng,phá tung ra,sai chỗ nào tự sửa nhé !

27 tháng 3 2020

\(\frac{\left(x+1\right)^2}{3}+\frac{\left(x+2\right)\left(x-3\right)}{2}=\frac{\left(5x-1\right)\left(x-4\right)}{6}+\frac{28}{3}\)

\(\Leftrightarrow\frac{2\left(x+1\right)^2+3\left(x+2\right)\left(x-3\right)-\left(5x-1\right)\left(x-4\right)}{6}=\frac{28}{3}\)

\(\Leftrightarrow\frac{2x^2+4x+2+3x^2-3x-18-5x^2-21x+4}{6}=\frac{28}{3}\)

\(\Leftrightarrow\frac{\left(4x-3x-21x\right)+\left(2-18+4\right)}{6}=\frac{56}{6}\)

\(\Leftrightarrow-20x-12=56\)

\(\Leftrightarrow-20x=68\)

\(\Leftrightarrow x=-\frac{17}{5}\)

Tự check lại nhá

20 tháng 3 2020

\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\left(x\ne3;x\ne-1\right)\)

\(\Leftrightarrow\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\frac{x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}-\frac{2x\cdot2}{2\left(x+1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\frac{x^2+x}{2\left(x+1\right)\left(x-3\right)}+\frac{x^2-3x}{2\left(x+1\right)\left(x-3\right)}-\frac{4x}{2\left(x+1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\frac{x^2+x+x^2-3x-4x}{2\left(x+1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\frac{2x^2-6x}{2\left(x+1\right)\left(x-3\right)}=\frac{2x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{2x}{2\left(x+1\right)}=0\)

=> 2x=0

=> x=0(tmđk)
Vậy x=0 là nghiệm của phương trình

30 tháng 3 2020

\(\text{GIẢI :}\)

ĐKXĐ : \(x\ne\pm1\)

\(\frac{2}{x+1}+\frac{x}{x-1}=\frac{\left[1\frac{1}{6}\cdot\frac{6}{7}+\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\right]x+1}{x^2-1}\)

\(\Leftrightarrow\frac{2}{x+1}+\frac{x}{x-1}=\frac{x+1}{x^2-1}\)

\(\Leftrightarrow\frac{2}{x+1}+\frac{x}{x-1}-\frac{x+1}{x^2-1}=0\)

\(\Leftrightarrow\frac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{x+1}{\left(x+1\right)\left(x-1\right)}=0\)

\(\Rightarrow\text{ }2\left(x-1\right)+x\left(x+1\right)-(x+1)=0\)

\(\Leftrightarrow\text{ }2\left(x-1\right)+\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2+x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-1\text{ (loại)}\\x=-3\text{ (Chọn)}\end{cases}}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-3\right\}\).

24 tháng 5 2020

\(\frac{2}{x+1}+\frac{x}{x-1}=\frac{\left[1\frac{1}{6}.\frac{6}{7}+\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\right]x+1}{x^2-1}\)\(đk:x\ne\pm1\)

\(< =>\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{\left[\frac{7}{6}.\frac{6}{7}+\left(1\right)\right]x+1}{x^2-1}\)

\(< =>\frac{2x-2+x^2+x}{x^2+x-x-1}=\frac{2x+1}{x^2-1}\)\(< =>\frac{x^2+3x-2}{x^2-1}=\frac{2x-1}{x^2-1}\)

\(< =>x^2+2x-2=2x-1\)\(< =>x^2+2x-2x-2+1=0\)

\(< =>x^2-1=0< =>x^2=1\)\(< =>x=\pm1\)\(\left(ktmđk\right)\)

Vậy phương trình trên vô nghiệm

24 tháng 6 2019

   \(\frac{13}{\left(2x+7\right)\left(x-3\right)}+\frac{1}{2x+7}=\frac{6}{x^2-9}\left(1\right)\)

\(ĐKXĐ:x\ne\frac{-7}{2};x\ne\pm3\)

\(MTC:\left(2x+7\right)\left(x-3\right)\left(x+3\right)=\left(2x+7\right)\left(x^2-9\right)\)

\(\left(1\right)\Leftrightarrow\frac{13\left(x+3\right)}{\left(2x+7\right)\left(x^2-9\right)}+\frac{\left(x^2-9\right)}{\left(2x+7\right)\left(x^2-9\right)}=\frac{6\left(2x+7\right)}{\left(2x+7\right)\left(x^2-9\right)}\)

\(\Rightarrow13\left(x+3\right)+\left(x^2-9\right)=6\left(2x+7\right)\)

\(\Leftrightarrow13x+39+x^2-9=12x+42\)

\(\Leftrightarrow13x+x^2+30=12x+42\)

\(\Leftrightarrow x^2+13x-12x+30-42=0\)

\(\Leftrightarrow x^2+x-12\)

\(\Leftrightarrow x^2-3x+4x-12=0\)

\(\Leftrightarrow\left(x^2-3x\right)+\left(4x-12\right)=0\)

\(\Leftrightarrow x\left(x-3\right)+4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)=0\)

Hoặc \(x-3=0\Leftrightarrow x=3\left(L\right)\)

Hoặc \(x+4=0\Leftrightarrow x=-4\left(N\right)\)

Vậy tập nghiệm của phương trình là \(S=\left\{-4\right\}\)

24 tháng 6 2019

Giải :

\(\text{ĐKXĐ :}\:x\ne-\frac{7}{2}\:\text{và}\:x\ne\pm3 \). Mẫu chung là \(\left(2x+7\right)\left(x+3\right)\left(x-3\right)\).

Khử mẫu ta được :

\(13\left(x+3\right)+\left(x+3\right)\left(x-3\right)=6\left(2x+7\right)\Leftrightarrow x^2+x-12=0\)

                                                                                               \(\Leftrightarrow x^2+4x-3x-12=0\)

                                                                                               \(\Leftrightarrow x\left(x+4\right)-3\left(x+4\right)=0\)

                                                                                               \(\Leftrightarrow(x+4)(x-3)=0\)

                                                                                               \(\Leftrightarrow x=-4\:\text{hoặc}\:x=3\)

Trong 2 giá trị tìm được, chỉ có \(x=-4\) là thoả mãn ĐKXĐ. Vậy phương trình có 1 nghiệm duy nhất \(x=-4\).

8 tháng 2 2021

nhìn căng nhể :))

a) ( x - 1 )( x - 3 )( x + 5 )( x + 7 ) - 297 = 0

<=> [ ( x - 1 )( x + 5 ) ][ ( x - 3 )( x + 7 ) ] - 297 = 0

<=> ( x2 + 4x - 5 )( x2 + 4x - 21 ) - 297 = 0

Đặt t = x2 + 4x - 5

pt <=> t( t - 16 ) - 297 = 0

<=> t2 - 16t - 297 = 0

<=> t2 - 27t + 11t - 297 = 0

<=> t( t - 27 ) + 11( t - 27 ) = 0

<=> ( t - 27 )( t + 11 ) = 0

<=> ( x2 + 4x - 5 - 27 )( x2 + 4x - 5 + 11 ) = 0

<=> ( x2 + 4x - 32 )( x2 + 4x + 6 ) = 0

<=> ( x2 - 4x + 8x - 32 )( x2 + 4x + 6 ) = 0

<=> [ x( x - 4 ) + 8( x - 4 ) ]( x2 + 4x + 6 ) = 0

<=> ( x - 4 )( x + 8 )( x2 + 4x + 6 ) = 0

Đến đây dễ rồi :)

20 tháng 3 2020

\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\left(x\ne3;x\ne-1\right)\)

\(\Leftrightarrow\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}-\frac{2x\cdot2}{2\left(x-3\right)\left(x+1\right)}=0\)

\(\Leftrightarrow\frac{x^2+x+x^2-3x-4x}{2\left(x-3\right)\left(x+1\right)}=0\)

\(\Leftrightarrow\frac{2x^2-6x}{2\left(x-3\right)\left(x+1\right)}=0\)

\(\Leftrightarrow\frac{2x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}=0\)

=> 2x=0

<=> x=0

Vậy x=0

20 tháng 3 2020

+ Ta có: \(\frac{x}{2.\left(x-3\right)}+\frac{x}{2.\left(x+1\right)}=\frac{2x}{\left(x+1\right).\left(x-3\right)}\)\(\left(ĐKXĐ: x\ne-1, x\ne3\right)\)

      \(\Leftrightarrow\frac{x.\left(x+1\right)+x.\left(x-3\right)}{2.\left(x-3\right).\left(x+1\right)}=\frac{4x}{2.\left(x-3\right).\left(x+1\right)}\)

       \(\Rightarrow x^2+x+x^2-3x=4x\)

      \(\Leftrightarrow\left(x^2+x^2\right)+\left(x-3x-4x\right)=0\)

      \(\Leftrightarrow2x^2-6x=0\)

      \(\Leftrightarrow2x.\left(x-6\right)=0\)

      \(\Leftrightarrow\orbr{\begin{cases}x=0\\x-6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\left(TM\right)\\x=6\left(TM\right)\end{cases}}\)

Vậy \(S=\left\{0,6\right\}\)

+ Ta có: \(\frac{1}{x-1}+\frac{2}{x^2+x+1}=\frac{3x^2}{x^3-1}\)\(\left(ĐKXĐ:x\ne1,x^2+x+1\ne0\right)\)

       \(\Leftrightarrow\frac{\left(x^2+x+1\right)+2.\left(x-1\right)}{\left(x-1\right).\left(x^2+x+1\right)}=\frac{3x^2}{\left(x-1\right).\left(x^2+x+1\right)}\)

        \(\Rightarrow x^2+x+1+2x-2=3x^2\)

      \(\Leftrightarrow\left(x^2-3x^2\right)+\left(x+2x\right)+\left(1-2\right)=0\)

      \(\Leftrightarrow-2x^2+3x-1=0\)

      \(\Leftrightarrow2x^2-3x+1=0\)

      \(\Leftrightarrow\left(2x^2-2x\right)-\left(x-1\right)=0\)

      \(\Leftrightarrow2x.\left(x-1\right)-\left(x-1\right)=0\)

      \(\Leftrightarrow\left(2x-1\right).\left(x-1\right)=0\)

      \(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=1\\x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(TM\right)\\x=1\left(L\right)\end{cases}}\)

Vậy \(S=\left\{\frac{1}{2}\right\}\)