K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2019

\(Pt\Leftrightarrow\sqrt{\left(x-\frac{1}{2}\right)^2}=\left(2x-1\right)\left(x^2+1\right).\)

(Đk có nghiệm: \(x\ge\frac{1}{2}\))

\(Pt\Leftrightarrow\left|x-\frac{1}{2}\right|=\left(2x-1\right)\left(x^2+1\right)\Rightarrow x-\frac{1}{2}=\left(2x-1\right)\left(x^2+1\right)\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2+1-\frac{1}{2}\right)=0\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\left(t.m\right)\)

5 tháng 1 2019

u6u6u6u56u56u56h5e686u6rtujrdtfghbngyjgultjrt6ru756785uehrthtdgbhtybrnyntyjgnjtdnytntyngrthtrberhrrthbhretrbthrhfhthb

5 tháng 1 2019

x = 5,44948974 

28 tháng 7 2018

a)  ĐK:  \(x\ge5\)

 \(\sqrt{4x-20}+\frac{1}{3}\sqrt{9x-45}-\frac{1}{5}\sqrt{16x-80}=0\)

\(\Leftrightarrow\)\(\sqrt{4\left(x-5\right)}+\frac{1}{3}\sqrt{9\left(x-5\right)}-\frac{1}{5}\sqrt{16\left(x-5\right)}=0\)

\(\Leftrightarrow\)\(2\sqrt{x-5}+\sqrt{x-5}-\frac{4}{5}\sqrt{x-5}=0\)

\(\Leftrightarrow\)\(\frac{11}{5}\sqrt{x-5}=0\)

\(\Leftrightarrow\)\(x-5=0\)

\(\Leftrightarrow\)\(x=5\) (t/m)

Vậy

b)  \(-5x+7\sqrt{x}=-12\)

\(\Leftrightarrow\)\(5x-7\sqrt{x}-12=0\)

\(\Leftrightarrow\)\(\left(\sqrt{x}+1\right)\left(5\sqrt{x}-12\right)=0\)

đến đây tự làm

c) d) e) bạn bình phương lên

28 tháng 7 2018

f)  \(VT=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^4-2x^2+1\right)+25}\)

             \(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2}\)

           \(\ge\sqrt{9}+\sqrt{25}=8\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\x^2-1=0\end{cases}}\)\(\Leftrightarrow\)\(x=-1\)

Vậy...

28 tháng 5 2020

ĐKXĐ : \(x\ge1\)

PT đã cho tương đương với :

\(\sqrt{3x-2}+\sqrt{x-1}=\left[3x-2+2\sqrt{3x^2-5x+2}+x-1\right]-6\)

\(\Leftrightarrow\sqrt{3x-2}+\sqrt{x-1}=\left(\sqrt{3x-2}+\sqrt{x-1}\right)^2-6\)

Đặt \(\sqrt{3x-2}+\sqrt{x-1}=t\left(t\ge1\right)\)

Khi đó : \(t^2-t-6=0\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\left(loai\right)\end{cases}}\)

\(\Rightarrow\sqrt{3x-2}+\sqrt{x-1}=3\)

từ đó dễ dàng tìm được x

29 tháng 5 2020

Làm tiếp bài của @Thanh Tùng DZ

Thay t=3 vào cách đặt ta được \(\sqrt{3x-2}+\sqrt{x-1}=3\left(3a\right)\)

Ta có \(\left(3a\right)\Leftrightarrow4x-3+2\sqrt{3x^2-5x+2}=9\)

\(\Leftrightarrow\sqrt{3x^2-5x+2}=6-2x\)

\(\Leftrightarrow\hept{\begin{cases}6-2x\ge0\\3x^2-5x+2=36-24x+4x^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\le3\\x=2;x=17\end{cases}\Leftrightarrow x=2}\)

20 tháng 9 2020

\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)

Ta đánh giá vế phải \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=\sqrt{2\left(x-4\right)^2+9}+\sqrt{3\left(x-4\right)^2+16}\ge\sqrt{9}+\sqrt{16}=3+4=7\)(Do \(\left(x-4\right)^2\ge0\forall x\))

Như vậy, để \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)(hay dấu "=" xảy ra) thì \(\left(x-4\right)^2=0\)hay x = 4

Vậy nghiệm duy nhất của phương trình là 4

22 tháng 9 2020

f, \(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\left(đk:25\ge x\ge0\right)\)

\(< =>\sqrt{8+\sqrt{x}}-\sqrt{9}+\sqrt{5-\sqrt{x}}-\sqrt{4}=0\)

\(< =>\frac{8+\sqrt{x}-9}{\sqrt{8+\sqrt{x}}+\sqrt{9}}+\frac{5-\sqrt{x}-4}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\frac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{\sqrt{x}-1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\left(\sqrt{x}-1\right)\left(\frac{1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}\right)=0\)

\(< =>x=1\)( dùng đk đánh giá cái ngoặc to nhé vì nó vô nghiệm )

26 tháng 2 2020

ĐKXĐ: \(x\ge-1\)

\(2x^2+4=5\sqrt{x^3+1}\Leftrightarrow2\left(x+1+x^2-x+1\right)=5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\)(1)

Đặt \(\hept{\begin{cases}a=\sqrt{x+1}\ge0\\b=\sqrt{x^2-x+1}\ge0\end{cases}}\) pt (1) trở thành \(2\left(a^2+b^2\right)=5ab\Leftrightarrow2a^2-5ab+2b^2=0\)

\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\Leftrightarrow\orbr{\begin{cases}2a=b\\a=2b\end{cases}}\Leftrightarrow\orbr{\begin{cases}2\sqrt{x+1}=\sqrt{x^2-x+1}\\\sqrt{x+1}=2\sqrt{x^2-x+1}\end{cases}}\)

Đến đây thì bạn xét từng trường hợp để giải pt là xong