K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2020

\(\frac{x}{x+1}+\frac{x+1}{x+2}+\frac{x+2}{x}=\frac{25}{6}\)

<=> 6x2(x + 2) + 6x(x + 1)2 + 6(x + 2)2(x + 1) = 25x(x + 1)(x + 2)

<=> 18x2 + 54x+ 54x + 24 = 25x3 + 75x2 + 50x

<=> 18x2 + 54x2 + 54x + 24 - 25x2 - 75x2 - 50x = 0

<=> -7x3 - 21x2 + 4x + 24 = 0

<=> (-7x2 - 28x - 24)(x - 1) = 0

vì 7x2 + 28x + 24 khác 0 nên:

<=> x - 1 = 0

<=> x = 0

a, \(\left(x^2-2x+1\right)-4=0\)

\(x^2-2x+1-4=0\)

\(x^2-2x-3=0\)

\(\Delta=b^2-4ac=\left(-2\right)^2-4.1.3=4-12=-8< 0\)

Nên pt vô nghiệm 

b, \(\left| 5x-5\right|=0\)

\(\Leftrightarrow5x-5=0\Leftrightarrow5x=5\Leftrightarrow x=1\)

c, ĐKXĐ : \(\hept{\begin{cases}x+2\ne0\\x-2\ne0\\x^2-4\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-2\\x\ne2\\x\ne\pm2\end{cases}\Rightarrow}x\ne\pm2}\)

\(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\)

\(\frac{\left(x-2\right)^2\left(x^2-4\right)}{\left(x+2\right)\left(x-2\right)\left(x^2-4\right)}+\frac{3\left(x+2\right)\left(x^2-4\right)}{\left(x-2\right)\left(x+2\right)\left(x^2-4\right)}=\frac{\left(x^2-11\right)\left(x+2\right)\left(x-2\right)}{\left(x^2-4\right)\left(x+2\right)\left(x-2\right)}\)

\(\left(x-2\right)^2\left(x^2-4\right)+3\left(x+2\right)\left(x^2-4\right)=\left(x^2-11\right)\left(x+2\right)\left(x-2\right)\)

\(\left(x-2\right)^2+3\left(x+2\right)=x^2-11\)

\(x^2-x+10=x^2-11\)

\(x^2-x+10-x^2+11=0\)

\(-x+21=0\Leftrightarrow x-21=0\Leftrightarrow x=21\)Theo ĐKXĐ : => tm 

6 tháng 5 2020

a, \(\left(x^2-2x+1\right)-4=0\) \(\Leftrightarrow\left(x-1\right)^2=4=\left(\pm2\right)^2\)

                                                           \(\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

Vậy phương trình có 2 nghiệm x=(3; -1)

b, \(\left|5x-5\right|=0\Leftrightarrow5x-5=0\)

                                 \(\Leftrightarrow5x=5\Rightarrow x=1\)

Vậy phương trình có nghiệm x=1

c, \(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\)\(\left(x\ge0;x\ne2\right)\) \(\Leftrightarrow\frac{\left(x-2\right)^2}{\left(x-2\right).\left(x+2\right)}+\frac{3.\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{x^2-11}{\left(x-2\right).\left(x+2\right)}\)

                                                                  \(\Leftrightarrow\left(x-2\right)^2+3.\left(x+2\right)=x^2-11\)

                                                                 \(\Leftrightarrow x^2-4x+4+3x+6=x^2-11\)

                                                                 \(\Leftrightarrow x=21\left(TM\right)\)

Vậy phương trình có nghiệm x=21

24 tháng 10 2019

Nếu x lớn hơn hoặc bằng 2, có:

|x - 2|(x - 1)(x + 1)(x + 2) = 4

(x - 2)(x + 2)(x - 1)(x + 1) = 4

(x2 - 4)(x2 - 1) = 4

x4 - 4x2 + 4 = 4

(x2 - 2)2 = 4 => x2 - 2 = 2 => x2 = 4 => x = 2

Nếu x nhỏ hơn 2, có:

|x - 2|(x - 1)(x + 1)(x + 2) = 4

(2 - x)(2 + x)(x - 1)(x + 1) = 4

(4 - x2)(x2 - 1) = 4

5x2 - x4 - 4 = 4

x2 - (x4 - 4x2 + 4) = 4

x2 - 4 - (x2 - 2)2 = 0

(x ​- 2)(x + 2) - (x2 - 2)2 = 0

6 tháng 11 2019

Câu đầu sai rồi, phải là nếu x lớn hơn 2 thôi vì nếu x=2 thì kết quả của vế trái sẽ bằng 0.

Mà 0≠4=>Vô lí=>x≠2.

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:

\((x^2-1)(x^2-25)=25x^2\)

\(\Leftrightarrow x^4-26x^2+25=25x^2\)

\(\Leftrightarrow x^4-51x^2+25=0\)

\(\Leftrightarrow a^2-51a+25=0\) (đặt \(a=x^2)\)

\(\Leftrightarrow (a-\frac{51}{2})^2=\frac{2501}{4}\Rightarrow a-\frac{51}{2}=\pm \frac{\sqrt{2501}}{2}\)

\(\Rightarrow a=\frac{51\pm \sqrt{2501}}{2}\)

\(\Rightarrow x=\pm \sqrt{\frac{51\pm \sqrt{2501}}{2}}\)

AH
Akai Haruma
Giáo viên
29 tháng 6 2019

Lời giải:

\((x^2-1)(x^2-25)=25x^2\)

\(\Leftrightarrow x^4-26x^2+25=25x^2\)

\(\Leftrightarrow x^4-51x^2+25=0\)

\(\Leftrightarrow a^2-51a+25=0\) (đặt \(a=x^2)\)

\(\Leftrightarrow (a-\frac{51}{2})^2=\frac{2501}{4}\Rightarrow a-\frac{51}{2}=\pm \frac{\sqrt{2501}}{2}\)

\(\Rightarrow a=\frac{51\pm \sqrt{2501}}{2}\)

\(\Rightarrow x=\pm \sqrt{\frac{51\pm \sqrt{2501}}{2}}\)

NV
27 tháng 6 2019

\(\Leftrightarrow x^4-26x^2+25=25x^2\)

\(\Leftrightarrow x^4-51x^2+25=0\)

\(\Leftrightarrow x^2=\frac{51\pm\sqrt{2501}}{2}\Rightarrow x=\pm\sqrt{\frac{51\pm\sqrt{2501}}{2}}\)

X-\(\frac{3}{2}\)+X-\(\frac{5}{6}\)=\(-\frac{1}{3}\)

2X=\(-\frac{1}{3}\)+\(\frac{3}{2}+\frac{5}{6}\)

➜ 2X=2

➜X = 1

Vậy....................

2 tháng 4 2020

Lộn đề rồi

NV
29 tháng 6 2019

ĐKXĐ: ...

\(\Leftrightarrow\frac{49}{\left(x-7\right)^2}+1=\frac{25}{x^2}\)

\(\Leftrightarrow\frac{49x^2}{\left(x-7\right)^2}+x^2=25\)

\(\Leftrightarrow\frac{49x^2}{\left(x-7\right)^2}+2.\frac{7x}{x-7}.x+x^2-\frac{14x^2}{x-7}=25\)

\(\Leftrightarrow\left(\frac{7x}{x-7}+x\right)^2-\frac{14x^2}{x-7}=25\)

\(\Leftrightarrow\left(\frac{x^2}{x-7}\right)^2-\frac{14x^2}{x-7}-25=0\)

Đặt \(\frac{x^2}{x-7}=a\)

\(\Rightarrow a^2-14a-25=0\)

Nghiệm xấu, bạn tự giải tiếp đoạn cuối

24 tháng 3 2018

1)

\(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)

\(\Leftrightarrow\left(x+1\right)\left(x+5\right).\left(x+2\right)\left(x+4\right)-40=0\)

\(\Leftrightarrow\left(x^2+6x+5\right).\left(x^2+6x+8\right)-40=0\)

Đặt \(a=x^2+6x+6\) ta có:

\(\Leftrightarrow\left(a-1\right)\left(a+2\right)-40=0\)

\(\Leftrightarrow a^2+a-2-40=0\)

\(\Leftrightarrow a^2-6x+7x-42=0\)

\(\Leftrightarrow a\left(a-6\right)+7\left(a-6\right)=0\)

\(\Leftrightarrow\left(a-6\right)\left(a+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=6\\a=-7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+6x+6=6\\x^2+6x+6=-7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+6x=0\\x^2+6x+13=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=0\end{matrix}\right.\)

(\(x^2+6x+13=\left(x+3\right)^2+4>0\left(loại\right)\))

Vậy.................

24 tháng 3 2018

3)

\(\left|x+4\right|=\left|3-2x\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=3-2x\\x+4=-3+2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-x+7=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=7\end{matrix}\right.\)

Vậy..........