Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.giá trị nhỏ nhất hả bạn?
ta có: B = x4-x2+2x+7
=x4-2x2+1+x2+2x+1+5
=(x2-1)2+(x+1)2+5\(\ge5\)
vậy min B=5
dấu "=" xảy ra \(\Leftrightarrow x=-1\)
b.\(\frac{x+6}{1005}+2+\frac{x+132}{471}+4\frac{x+1008}{168}+6=0\)
\(\Leftrightarrow\frac{x+2016}{1005}+\frac{x+2016}{471}+\frac{x+2016}{168}=0\)
\(\Leftrightarrow\left(x+2016\right)\left(\frac{1}{1005}+\frac{1}{471}+\frac{1}{168}\right)=0\)
dễ thấy x+2016=0 =>x=-2016
vậy...
Giải :
\(\frac{x+\frac{2\left(3-x\right)}{5}}{12}=1+\frac{1-\frac{9-2x}{12}}{5}\)
\(\Leftrightarrow\frac{\frac{5x+6-2x}{5}}{12}=1+\frac{\frac{12-9+2x}{12}}{5}\)
\(\Leftrightarrow\frac{3x+6}{5\cdot12}=1+\frac{3+2x}{5\cdot12}\)
\(\Leftrightarrow\frac{3x+6}{60}=\frac{60+3+2x}{60}\)
\(\Leftrightarrow3x+6=63+2x\)
\(\Leftrightarrow3x-2x=63-6\)
\(\Leftrightarrow x=57\)
Vậy phương trình có tập nghiệm \(S=\left\{57\right\}\).
\(\frac{\left(x-2\right)^2}{12}-\frac{\left(x+1\right)^2}{21}=\frac{\left(x-4\right)\left(x-6\right)}{28}\)
<=> \(\frac{7\left(x^2-4x+4\right)}{84}-\frac{4\left(x^2+2x+1\right)}{84}=\frac{3\left(x^2-10x+24\right)}{84}\)
<=> 7x2 - 28x + 28 - 4x2 - 8x - 4 = 3x2 - 30x + 72
<=> 3x^2 - 36x - 3x^2 + 30x = 72 - 24
<=> -6x = 48
<=> x = -8
Vậy S = {-8}
\(\text{GIẢI :}\)
ĐKXĐ : \(x\ne\pm1\)
\(\frac{2}{x+1}+\frac{x}{x-1}=\frac{\left[1\frac{1}{6}\cdot\frac{6}{7}+\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\right]x+1}{x^2-1}\)
\(\Leftrightarrow\frac{2}{x+1}+\frac{x}{x-1}=\frac{x+1}{x^2-1}\)
\(\Leftrightarrow\frac{2}{x+1}+\frac{x}{x-1}-\frac{x+1}{x^2-1}=0\)
\(\Leftrightarrow\frac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{x+1}{\left(x+1\right)\left(x-1\right)}=0\)
\(\Rightarrow\text{ }2\left(x-1\right)+x\left(x+1\right)-(x+1)=0\)
\(\Leftrightarrow\text{ }2\left(x-1\right)+\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2+x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-1\text{ (loại)}\\x=-3\text{ (Chọn)}\end{cases}}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-3\right\}\).
\(\frac{2}{x+1}+\frac{x}{x-1}=\frac{\left[1\frac{1}{6}.\frac{6}{7}+\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\right]x+1}{x^2-1}\)\(đk:x\ne\pm1\)
\(< =>\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{\left[\frac{7}{6}.\frac{6}{7}+\left(1\right)\right]x+1}{x^2-1}\)
\(< =>\frac{2x-2+x^2+x}{x^2+x-x-1}=\frac{2x+1}{x^2-1}\)\(< =>\frac{x^2+3x-2}{x^2-1}=\frac{2x-1}{x^2-1}\)
\(< =>x^2+2x-2=2x-1\)\(< =>x^2+2x-2x-2+1=0\)
\(< =>x^2-1=0< =>x^2=1\)\(< =>x=\pm1\)\(\left(ktmđk\right)\)
Vậy phương trình trên vô nghiệm
a) 8x - 3 = 5x + 12
<=> 8x - 5x = 12 + 3
<=> 3x = 15
<=> x = 5
b) \(\frac{x}{x^2-4}=\frac{1}{x+2}-\frac{1-x}{2-x}\) ; x khác +-2
<=> \(\frac{x}{\left(x-2\right)\left(x+2\right)}=\frac{1}{x+2}-\frac{1-x}{2-x}\)
=> x(2 - x) = (x - 2)(2 - x) - (1 - x)(x + 2)(x - 2)
<=> -x^2 + 2x = x^3 - 2x^2
<=> -x^2 + 2x - x^3 + 2x^2 = 0
<=> x^3 - x^2 - 2x = 0
<=> x(x + 1)(x - 2) = 0
<=> x = 0 hoặc x + 1 = 0 hoặc x - 2 = 0
<=> x = 0 (tm) hoặc x = -1 (tm) hoặc x = 2 (ktm)
Vậy: phương trình có tập nghiệm: S = {0; -1}
c) |x - 5| = 3x + 1
Ta có: \(\left|x-5\right|=\hept{\begin{cases}x-5\text{ nếu }x-5\ge0\Leftrightarrow x\ge5\\-\left(x-5\right)\text{ nếu }x-5< 0\Leftrightarrow x< 5\end{cases}}\)
+) Nếu x > 5, ta có phương trình:
x - 5 = 3x + 1
<=> x - 3x = 1 + 5
<=> -2x = 6
<=> x = -3 (ktm)
+) Nếu x < 5, ta có phương trình:
-(x - 5) = 3x + 1
<=> -x + 5 = 3x + 1
<=> -x - 3x = 1 - 5
<=> -4x = -4
<=> x = 1 (tm)
Vậy: phương trình có tập nghiệm: S = {1}
Giải phương trình sau:
\(\frac{x+2001}{5}+\frac{x+1999}{7}+\frac{x+1997}{9}+\frac{x+1995}{11}=-4.\)-4
\(\frac{x+2001}{5}+\frac{x+1999}{7}+\frac{x+1997}{9}+\frac{x+1995}{11}=-4\)
\(\Rightarrow\frac{x+2001}{5}+1+\frac{x+1999}{7}+1+\frac{x+1997}{9}+1+\frac{x+1995}{11}+1=0\)
\(\Rightarrow\frac{x+2006}{5}+\frac{x+2006}{7}+\frac{x+2006}{9}+\frac{x+2006}{11}=0\)
\(\Rightarrow\left(x+2006\right)\left(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}\right)=0\)
\(\Rightarrow x+2006=0\)vì \(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}>0\)
\(\Rightarrow x=-2006\)
\(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{6}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)=0\)
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1\right\}\).
\(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{6}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)=0\)
\(\Leftrightarrow x+1=0\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\ne0\right)\)
<=> x=-1
Vậy x=-1
\(\text{GIẢI :}\)
ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne-1\end{cases}}\).
\(\frac{1}{x}\left(\frac{x-1}{x+1}+\frac{2}{x+1}\right)=\frac{2}{3}\)
\(\Leftrightarrow\frac{1}{x}\cdot\frac{x-1+2}{x+1}\)
\(\Leftrightarrow\frac{x+1}{x\left(x+1\right)}=\frac{2}{3}\)
\(\Leftrightarrow\frac{1}{x}=\frac{2}{3}\)
\(\Leftrightarrow\frac{1}{x}-\frac{2}{3}=0\)
\(\Leftrightarrow\frac{3}{3x}-\frac{2x}{3x}=0\)
\(\Rightarrow\text{ }3-2x=0\)
\(\Leftrightarrow\text{ }2x=3\text{ }\Leftrightarrow\text{ }x=\frac{3}{2}\) (thỏa mãn ĐKXĐ)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{3}{2}\right\}\).
\(\frac{1}{x}\left(\frac{x-1}{x+1}+\frac{2}{x+1}\right)=\frac{2}{3}\)\(\left(đk:x\ne0;-1\right)\)
\(< =>\frac{1}{x}.\frac{x-1+2}{x+1}=\frac{2}{3}\)
\(< =>\frac{x+1}{x^2+x}=\frac{2}{3}\)
\(< =>3\left(x+1\right)=2\left(x^2+x\right)\)
\(< =>3x+3=2x^2+2x\)
\(< =>2x^2-x-3=0\)
Ta có : \(\Delta=\left(-1\right)^2-4.\left(2\right).\left(-3\right)=1+24=25\)
Vì delta > 0 nên phương trình có 2 nghiệm phân biệt
\(x_1=\frac{1+\sqrt{25}}{4}=\frac{1+5}{4}=\frac{3}{2}\)
\(x_2=\frac{1-\sqrt{25}}{4}=\frac{1-5}{4}=\frac{4}{4}=1\)
Vậy tập nghiệm của phương trình trên là \(\left\{1;\frac{3}{2}\right\}\)
\(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)
\(\Leftrightarrow\frac{x+1}{9}+1+\frac{x+2}{8}+1=\frac{x+3}{7}+1+\frac{x+4}{6}+1\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{8}=\frac{x+10}{7}+\frac{x+10}{6}\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{6}=0\)
\(\Leftrightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
Mà \(\frac{1}{9}< \frac{1}{8}< \frac{1}{7}< \frac{1}{6}\)nên \(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}< 0\)
Suy ra x + 10 = 0
Vậy x = -10
Pt ban đầu tương đương :
\(\left(\frac{x+1}{9}+1\right)+\left(\frac{x+2}{8}+1\right)=\left(\frac{x+3}{7}+1\right)+\left(\frac{x+4}{6}+1\right)\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{8}=\frac{x+10}{7}+\frac{x+10}{6}\)
\(\Leftrightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
Mà : \(\frac{1}{9}+\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\ne0\)
\(\Rightarrow x+10=0\)
\(\Leftrightarrow x=-10\) ( thỏa mãn )
Vậy pt đã cho có tập nghiệm \(S=\left\{-10\right\}\)
\(\frac{x+6}{1005}+\frac{x+132}{471}+\frac{x+1008}{168}=-12\)
\(\Leftrightarrow\frac{x+6}{1005}+2+\frac{x+132}{471}+4+\frac{x+1008}{168}+6=0\)
\(\Leftrightarrow\frac{x+2016}{1005}+\frac{x+2016}{471}+\frac{x+2016}{168}=0\)
\(\Leftrightarrow\left(x+2016\right)\left(\frac{1}{1005}+\frac{1}{471}+\frac{1}{168}\right)=0\)
Dễ thấy \(\frac{1}{1005}+\frac{1}{471}+\frac{1}{168}>0\)nên x + 2016 = 0
Vậy x = -2016
\(\frac{x+6}{1005}+\frac{x+132}{471}+\frac{x+1008}{168}=-12\)
\(\Leftrightarrow\frac{x+6}{3\cdot335}+\frac{x+132}{3\cdot157}+\frac{x+1008}{3\cdot56}=-12\)
\(\Leftrightarrow\frac{x+6}{335}+\frac{x+132}{157}+\frac{x+1008}{56}=-36\)
\(\Leftrightarrow\frac{x}{335}+\frac{x}{157}+\frac{x}{56}+\frac{6}{335}+\frac{132}{157}+18=-36\)
\(\Leftrightarrow\frac{x}{335}+\frac{x}{157}+\frac{x}{56}=-54-\frac{6}{335}-\frac{132}{157}\)
\(\Leftrightarrow x\left(\frac{1}{335}+\frac{1}{157}+\frac{1}{56}\right)=-6-\frac{6}{335}-12-\frac{132}{157}-36\)
\(\Leftrightarrow x\left(\frac{1}{335}+\frac{1}{157}+\frac{1}{56}\right)=\frac{-2016}{335}+\frac{-2016}{157}+\frac{-2016}{56}\)
\(\Leftrightarrow x\left(\frac{1}{335}+\frac{1}{157}+\frac{1}{56}\right)=-2016\left(\frac{1}{335}+\frac{1}{157}+\frac{1}{56}\right)\)
\(\Leftrightarrow x=-2016\)