Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK \(x\ne0,y\ne0\)
Hệ\(\Leftrightarrow\hept{\begin{cases}x-y+\frac{x-y}{xy}=0\left(1\right)\\x^3=2y-1\left(2\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y\\xy=-1\end{cases}}\)
Xét x=y => \(\left(2\right)\Leftrightarrow x^3-2x+1=0\Leftrightarrow\left(x-1\right)\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\Rightarrow y=1\\x=\frac{-1\pm\sqrt{5}}{2}=y\end{cases}}\)
Xét xy=-1
\(\left(2\right)\Leftrightarrow x^3+\frac{2}{x}+1=0\Leftrightarrow x^4+x+2=0\)(vô nghiệm)
Vậy/////
1)\(\hept{\begin{cases}\sqrt{x}-\sqrt{x-y-1}=1\\y^2+x+2y\sqrt{x}-y^2x=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{x}-1\right)^2=x-y-1\\\left(y+\sqrt{x}\right)^2-y^2x=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-2\sqrt{x}+1=x-y-1\\\left(y+\sqrt{x}-y\sqrt{x}\right)\left(y+\sqrt{x}+y\sqrt{x}\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2\sqrt{x}-y=2\\\left(y+\sqrt{x}-y\sqrt{x}\right)\left(y+\sqrt{x}+y\sqrt{x}\right)=0\end{cases}}\)
Đặt \(\hept{\begin{cases}\sqrt{x}=a\left(\ge0\right)\\y=b\end{cases}}\)
=> hệ phương trình \(\Leftrightarrow\hept{\begin{cases}2a-b=2\\\left(b+a-ab\right)\left(b+a+ab\right)=0\end{cases}}\)
Tham khảo nhé~
\(Đkxđ:\hept{\begin{cases}x\ge2\\y\ge2\end{cases}}\)
Ta thấy các vế đều \(\ge0\)nên ta bình phương các vế ta được:
\(\Leftrightarrow\hept{\begin{cases}x+y+3+2\sqrt{\left(x+5\right)\left(y-2\right)}=49\\x+y+3+2\sqrt{\left(x-2\right)\left(y+5\right)}=49\end{cases}}\)
Trừ từng vế ta được:
\(\sqrt{\left(x+5\right)\left(y-2\right)}=\sqrt{\left(x-2\right)\left(y+5\right)}\)
\(\Leftrightarrow\left(x+5\right)\left(y-2\right)=\left(x-2\right)\left(y+5\right)\)
\(\Leftrightarrow xy+5y-2x-10=xy+5x-2y-10\)
\(\Leftrightarrow x=y\)
Thay vào một trong hai pt trên ta được:
\(2x+3+2\sqrt{x^2+3x-10}=49\)
\(\Leftrightarrow\sqrt{x^2+3x-10}=23-x\Leftrightarrow\hept{\begin{cases}x\le23\\x^2+3x-10=\left(23-x\right)^2\end{cases}}\Leftrightarrow x=11\)
Vậy hpt có nghiệm là: \(x=y=11\)