K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2020

Check lại đề phát bạn.

26 tháng 7 2015

a/ \(x^2+4x+5=2\sqrt{2x+3}\)

ĐK: \(x\ge-\frac{3}{2}\)

Cách 1:

Đặt \(\sqrt{2x+3}=y+2\text{ (}y\ge-2\text{)}\Rightarrow\left(y+2\right)^2=2x+3\text{ (1)}\)

Pt đã cho trở thành \(\left(x+2\right)^2+1=2\left(y+2\right)\Leftrightarrow\left(x+2\right)^2=2y+3\text{ (2)}\)

\(\left(2\right)-\left(1\right)\Rightarrow\left(x+2\right)^2-\left(y+2\right)^2=2\left(y-x\right)\Leftrightarrow\left(x-y\right)\left(x+y+6\right)=0\)

\(\Leftrightarrow x=y\text{ }\left(\text{do }x\ge-\frac{3}{2};\text{ }y\ge-2\text{ nên }x+y+6\ge-\frac{3}{2}-2+6>0\right)\)

Do đó, phương trình đã cho tương tương:

\(x=\sqrt{2x+3}-2\Leftrightarrow x+2=\sqrt{2x+3}\Leftrightarrow\left(x+2\right)^2=2x+3\)

\(\Leftrightarrow x^2+2x+1=0\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Kết luận: \(x=-1.\)

Cách 2:

\(pt\Leftrightarrow\frac{1}{4}\left(2x+3\right)^2+\frac{1}{2}\left(2x+3\right)+\frac{5}{4}=2\sqrt{2x+3}\)

Đặt \(t=\sqrt{2x+3};\text{ }t\ge0\)

pt thành \(\frac{1}{4}t^4+\frac{1}{2}t^3+\frac{5}{4}=2t\Leftrightarrow\left(t-1\right)^2\left(t^2+2t+5\right)=0\)

\(\Leftrightarrow t-1=0\text{ }\left(\text{do }t^2+2t+5=\left(t+1\right)^2+4>0\right)\)

\(\Leftrightarrow t=1\)

Do đó, phương trình đã cho tương đương:

\(\sqrt{2x+3}=1\Leftrightarrow x=-1\)

Kết luận: \(x=-1.\)

Cách 3:

\(pt\Leftrightarrow\left(x^2+2x+1\right)+\left[\left(2x+3\right)-2\sqrt{2x+3}+1\right]=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2=0\)

\(\Leftrightarrow x+1=0\text{ và }\sqrt{2x+3}-1=0\)

\(\Leftrightarrow x=-1\)

Kết luận: \(x=-1.\)

 

b/ \(2\left(x^2-3x+2\right)=3\sqrt{x^3+8}\)

ĐK: \(x\ge-2\)

\(pt\Leftrightarrow2\left(x^2-2x+4\right)-2\left(x+2\right)=3\sqrt{x+2}.\sqrt{x^2-2x+4}\)

Đặt \(a=\sqrt{x^2-2x+4};\text{ }b=\sqrt{x+2}\left(a>0;\text{ }b\ge0\right)\)

Pt thành: \(2a^2-2b^2=3ab\Leftrightarrow\left(a-2b\right)\left(2a+b\right)=0\)

\(\Leftrightarrow a=2b\text{ }\left(\text{do }a>0;\text{ }b\ge0\text{ nên }2a+b>0\right)\)

Pt đã cho tương đương: \(\sqrt{x^2-2x+4}=2\sqrt{x+2}\Leftrightarrow x^2-2x+4=4\left(x+2\right)\)

\(\Leftrightarrow x^2-6x-4=0\Leftrightarrow x=3+\sqrt{13}\text{ hoặc }x=3-\sqrt{13}\)

Kết luận: \(x=3+\sqrt{13};\text{ }x=3-\sqrt{13}\)

10 tháng 11 2019

Câu a thì mình chịu rồi @@ sorry nha

Còn câu b, bạn thấy rằng x2-3x+2-x2+x+1+2x-3=0 đúng không nào?

Nếu như bạn còn nhớ công thức a+b+c=0 <=> a3+b3+c3=3abc

Thì chắc chắn là bạn sẽ giải ra được bài này thôi. Đáp số là x=1 hoặc x=2 hoặc x=3/2 bạn nhé.

Chúc bạn giải được câu b này. Nếu như vẫn còn thắc mắc thì trả lời lại cho mình để mình gừi bài giải chi tiết nhé, do giờ mình đang bận @@

20 tháng 9 2020

\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)

Ta đánh giá vế phải \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=\sqrt{2\left(x-4\right)^2+9}+\sqrt{3\left(x-4\right)^2+16}\ge\sqrt{9}+\sqrt{16}=3+4=7\)(Do \(\left(x-4\right)^2\ge0\forall x\))

Như vậy, để \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)(hay dấu "=" xảy ra) thì \(\left(x-4\right)^2=0\)hay x = 4

Vậy nghiệm duy nhất của phương trình là 4

22 tháng 9 2020

f, \(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\left(đk:25\ge x\ge0\right)\)

\(< =>\sqrt{8+\sqrt{x}}-\sqrt{9}+\sqrt{5-\sqrt{x}}-\sqrt{4}=0\)

\(< =>\frac{8+\sqrt{x}-9}{\sqrt{8+\sqrt{x}}+\sqrt{9}}+\frac{5-\sqrt{x}-4}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\frac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{\sqrt{x}-1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\left(\sqrt{x}-1\right)\left(\frac{1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}\right)=0\)

\(< =>x=1\)( dùng đk đánh giá cái ngoặc to nhé vì nó vô nghiệm )

Câu 1: Tính \(A=\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}\)\(B=\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)Câu 2: Giải phương trình và hệ phương trình saua) \(3x^2+2x=2\sqrt{x^2+x}+1-x\)b) \(\hept{\begin{cases}\frac{x-y}{7}+\frac{2x+y}{17}=7\\\frac{4x+y}{5}+\frac{y-7}{19}=15\end{cases}}\)Câu 3: Cạnh huyền của một tam giác vuông bằng 10cm. Hai cạnh góc vuông hơn kém nhau 2cm. Tìm các cạnh góc vuông...
Đọc tiếp

Câu 1: Tính 

\(A=\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}\)

\(B=\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)

Câu 2: Giải phương trình và hệ phương trình sau

a) \(3x^2+2x=2\sqrt{x^2+x}+1-x\)

b) \(\hept{\begin{cases}\frac{x-y}{7}+\frac{2x+y}{17}=7\\\frac{4x+y}{5}+\frac{y-7}{19}=15\end{cases}}\)

Câu 3: Cạnh huyền của một tam giác vuông bằng 10cm. Hai cạnh góc vuông hơn kém nhau 2cm. Tìm các cạnh góc vuông của tam giác đó.

Câu 4: Từ một điểm A ở ngoài đường tròn (O; R) vẽ tiếp tuyến AB và cát tuyến AMN của đường tròn (M nằm giữa A và N; B thuộc cung lớn MN). Gọi C là điểm chính giữa cung nhỏ MN. Đường thẳng MN lần lượt cắt OC và BC tại I và E.

a) CMR: Tứ giác AIOB là tứ giác nội tiếp.

b) CMR: \(\Delta ABE\)cân.

c) Biết AB = 2R. Tính chu vi của nửa đường tròn ngoại tiếp tứ giác AIOB theo R.

d) Kẻ tiếp tuyến thứ hai AL của (O). Gọi K là giao điểm của LB và AO. CMR: AM.AN = AL2; AK.AO = AM.AN

Câu 5: Cho x, y là hai số thỏa mãn x + 2y = 3. Tìm giá trị nhỏ nhất của: E = x2 + 2y2 

Câu 6: Tìm các cặp nghiệm nguyên trong các trường hợp sau

a) x2 - xy + y2 = 2x - 3y - 2

b) m2 + n2 = m + n + 8

Help me!!!

Thanks trc

3
11 tháng 8 2020

CÂU 1:

\(A=\sqrt[4]{\left(2\sqrt{6}+5\right)^2}+\sqrt[4]{\left(5-2\sqrt{6}\right)^2}\)

\(A=\sqrt{2\sqrt{6}+5}+\sqrt{5-2\sqrt{6}}\)

\(A=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)

\(A=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}\)

\(A=2\sqrt{3}\)

11 tháng 8 2020

CÂU 1:

\(B=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)

\(B=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\)

\(B=1-a\)

Vậy \(B=1-a\)

a,x4-10x2+9=0

=>(x-1)(x3+x2-9x-9)=0

=> (x-1)(x+1)(x-3)(x+3)=0

=>\(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)hoặc\(\orbr{\begin{cases}x-3=0\\x+3=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=\pm1\\x=\pm3\end{cases}}\)

Vậy tập nghiệm cuả pt là S={\(\pm1,\pm3\)}

16 tháng 4 2019

trả lời

h bn tính theo đenta là ra thôi mà

hok tốt