K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Ta có: \(x^3-3x^2+2x=0\)

\(\Leftrightarrow x\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=2\end{matrix}\right.\)

Vậy: S={0;1;2}

2) Ta có: \(\dfrac{x^2-x-1}{x+1}=2x-1\)

\(\Leftrightarrow x^2-x-1=\left(2x-1\right)\left(x+1\right)\)

\(\Leftrightarrow x^2-x-1=2x^2+2x-x-1\)

\(\Leftrightarrow x^2-x-1-2x^2-x+1=0\)

\(\Leftrightarrow-x^2-2x=0\)

\(\Leftrightarrow-x\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vậy: S={0;-2}

28 tháng 6 2021

       3x2+2x=0

<=>x(3x+2)=0

<=>x=0 hoặc 3x+2=0

từ đó bạn giải ra x thuộc{0;-2/3}

chúc bạn học tốt và nhớ tích đúng cho mình

 

a,x4-10x2+9=0

=>(x-1)(x3+x2-9x-9)=0

=> (x-1)(x+1)(x-3)(x+3)=0

=>\(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)hoặc\(\orbr{\begin{cases}x-3=0\\x+3=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=\pm1\\x=\pm3\end{cases}}\)

Vậy tập nghiệm cuả pt là S={\(\pm1,\pm3\)}

16 tháng 4 2019

trả lời

h bn tính theo đenta là ra thôi mà

hok tốt

11 tháng 7 2015

Bài 1:

a/ \(x^2-2x+\left|x-1\right|=0\Leftrightarrow\left(x-1\right)^2+\left|x-1\right|-1=0\)

Đặt \(t=\left|x-1\right|;\text{ }t\ge0\)

pt thành: \(t^2+t-1=0\Leftrightarrow t=\frac{-1+\sqrt{5}}{2}>0\text{ (nhận) hoặc }t=\frac{-1-\sqrt{5}}{2}<0\text{ (loại)}\)

\(\Rightarrow\left|x-1\right|=\frac{-1+\sqrt{5}}{2}\Rightarrow x-1=\frac{-1+\sqrt{5}}{2}\text{ hoặc }x-1=\frac{1-\sqrt{5}}{2}\)

\(\Leftrightarrow x=\frac{1+\sqrt{5}}{2}\text{ hoặc }x=\frac{3-\sqrt{5}}{2}\)

b/

\(\left|x-1\right|+\left|x-2\right|=2x\)

\(x-1=0\Leftrightarrow x=1;\text{ }x-2=0\Leftrightarrow x=2\)

+TH1: x < 1

\(pt\Leftrightarrow1-x+2-x=2x\Leftrightarrow x=\frac{3}{4}<1\text{ (nhận)}\)

+TH2: \(1\le x<2\)

\(pt\Leftrightarrow x-1+2-x=2x\Leftrightarrow x=\frac{1}{2}<1\text{ (loại)}\)

+TH3: \(x\ge2\)

\(pt\Leftrightarrow x-1+x-2=2x\Leftrightarrow-3=0\text{ (vô lí) }\)

Vậy pt có nghiệm \(x=\frac{3}{4}\)

Bài 2:

\(\left|mx-1\right|=5\)\(\Leftrightarrow mx-1=5\text{ hoặc }mx-1=-5\)

\(\Leftrightarrow mx=6\text{ hoặc }mx=-4\)

+Nếu \(m=0\) thì pt thành \(0x=6\text{ (vô lí) hoặc }0x=-4\text{ (vô lí)}\)

=> pt vô nghiệm

+Nếu \(m\ne0\) thì pt tương đương: \(x=\frac{6}{m}\text{ hoặc }x=-\frac{4}{m}\ne\frac{6}{m}\)

Vậy:

+\(m=0\), pt vô nghiệm.

+\(m\ne0\), pt có 2 nghiệm phân biệt \(x=\frac{6}{m};\text{ }x=-\frac{4}{m}\)

30 tháng 6 2019

\(Pt\Leftrightarrow\sqrt{\left(x-\frac{1}{2}\right)^2}=\left(2x-1\right)\left(x^2+1\right).\)

(Đk có nghiệm: \(x\ge\frac{1}{2}\))

\(Pt\Leftrightarrow\left|x-\frac{1}{2}\right|=\left(2x-1\right)\left(x^2+1\right)\Rightarrow x-\frac{1}{2}=\left(2x-1\right)\left(x^2+1\right)\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2+1-\frac{1}{2}\right)=0\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\left(t.m\right)\)

x4−3x3−2x2+6x+4=0x4−3x3−2x2+6x+4=0

⇔x4−2x3−2x2−x3+2x2+2x−2x2+4x+4=0⇔x4−2x3−2x2−x3+2x2+2x−2x2+4x+4=0

⇔x2(x2−2x−2)−x(x2−2x−2)−2(x2−2x−2)=0⇔x2(x2−2x−2)−x(x2−2x−2)−2(x2−2x−2)=0

⇔(x2−x−2)(x2−2x−2)=0⇔(x2−x−2)(x2−2x−2)=0

⇔(x+1)(x−2)(x−1−√3)(x−1+√3)=0⇔(x+1)(x−2)(x−1−3)(x−1+3)=0

⇔⎡⎢ ⎢ ⎢ ⎢⎣x=−1x=2x=1+√3x=1−√3

9 tháng 10 2021

tl

x4−3x3−2x2+6x+4=0x4−3x3−2x2+6x+4=0

⇔x4−2x3−2x2−x3+2x2+2x−2x2+4x+4=0⇔x4−2x3−2x2−x3+2x2+2x−2x2+4x+4=0

⇔x2(x2−2x−2)−x(x2−2x−2)−2(x2−2x−2)=0⇔x2(x2−2x−2)−x(x2−2x−2)−2(x2−2x−2)=0

⇔(x2−x−2)(x2−2x−2)=0⇔(x2−x−2)(x2−2x−2)=0

⇔(x+1)(x−2)(x−1−√3)(x−1+√3)=0⇔(x+1)(x−2)(x−1−3)(x−1+3)=0

⇔⎡⎢ ⎢ ⎢ ⎢⎣x=−1x=2x=1+√3x=1−√3

^HT^