K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, ta có (x-1)(2x-1)=0
<=> x-1=0 <=> x=1
2x-1=0 x=1/2
để mx2-(m+1)x+1=0 tương đương với (x-1)(2x-1)=0
<=> m-m-1+1=0 có cùng tập nghiệm với (x-1)(2x-1)=0
với x=1 thì m-(m+1)+1=0
<=>m-m-1+1=0
<=> 0 m = 0 ( lđ )
Với x=1/2 thì 1/4m - (m+1)1/2+1=0
<=> 1/4m - (m+1)1/2+1=0
<=> 1/4m - 2(m+1)/4 +4/4 =0
<=>m-2m-2+4=0
<=> -m +2=0
<=> -m=-2
<=>m=2

b; Ta có: (x-3)(ax+2)=0 và (2x+b)(x+1)=0.

=> (x-3)(ax+2)=(2x+b)(x+1).

<=> ax2+(2-3a)x-6=2x2+(2+b)x+b.

<=>a=2 và 2-3a=2+b và b=-6 (Hai phương trình bậc 2 bằng nhau thì các hệ số tương ứng sẽ bằng nhau).

Vậy a=2; b=-6 thỏa mãn phương trình trên.

14 tháng 4 2020

a) Ta có x2 >0 với mọi x thuộc Z

=> x=2 và x=-3 là nghiệm của BĐT đã cho

b) Vì x2 >0 với mọi giá trị x 

=> mọi giá trị ẩn x đều là nghiệm của bpt đã cho

17 tháng 7 2019

\(A=16-2x-x^2\)

\(A=-x^2-2.x.1-1+17\)

\(A=-\left(x^2+2.x.1+1\right)+17\)

\(A=-\left(x+1\right)^2+17\le17\)

Dấu = xảy ra khi : 

   \(x+1=0\Leftrightarrow x=-1\)

Vậy A max = 17 tại x = -1

17 tháng 7 2019

A=-(x^2+2x-16)

=-(x^2+2x+1-17)

=-(x+1)^2+17

vs mọi x, cs:

-(x+1)^2 > 0

=>-(x+1)^2+17 > 17

=> A > 7

dấu = xảy ra <=> (x+1)^2=0

                     <=>x+1=0<=>x=-1

vậy GTLN A=17 đạt đc khi x=-1

5 tháng 7 2018

a/ Ta có \(A=\frac{x-2}{x+2}\)

\(A=\frac{x+2-4}{x+2}\)

\(A=1-\frac{4}{x+2}\)

Để A > 1

<=> \(1-\frac{4}{x+2}>1\)

<=> \(\frac{4}{x+2}>0\)

<=> \(4>x+2\)

<=> \(2>x\)

<=> \(x< 2\)

Bạn coi lại đáp án câu a/ nha bạn. Mình ra là \(x< 2\).

b/ Để \(A\inℤ\)

<=> \(1-\frac{4}{x+2}\inℤ\)

Mà \(1\inℤ\)

<=> \(-\frac{4}{x+2}\inℤ\)

<=> \(\left(-4\right)⋮\left(x+2\right)\)

<=> \(x+2\in\)Ư (4)

Đến đây bạn giải quyết phần còn lại nhen. Mình lười lắm.

5 tháng 7 2018

b) Để A có giá trị là số nguyên 

Thì (x—2) chia hết cho (x+2)

==> (x+2–4) chia hết cho (x+2)

Vì (x+2) chia hết cho (x+2)

Nên (—4) chia hết cho (x+2)

==> x+2 € Ư(4)

==> x+2 €{1;—1;2;—2;4;—4}

TH1: x+2=1

x=1–2

x=—1

TH2: x+2=—1

x=—1–2

x=—3

TH3: x+2=2

x=2–2

x=0

TH4: x+2=—2

x=—2–2

Xa=—4

TH5: x+2=4

x=4–2

x=2

TH6: x+2=—4

x=—4–2

x=—6

Vậy x€{—1;—3;0;—4;2;—6}

10 tháng 2 2020

cho quãng đường ko z

10 tháng 2 2020

pro minecraft and miniworld Huhu ko có :(((

31 tháng 3 2019

Để \(\frac{x-1}{x+1}\)lớn hơn 0 \(\Leftrightarrow x\)khác -1  

Trường hợp 1 \(\Rightarrow\hept{\begin{cases}x-1>0\\x+1>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x>-1\end{cases}}\)\(\Rightarrow x>1\)

\(\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x-1>0\\x+1>0\end{cases}}\\\hept{\begin{cases}x-1< 0\\x+1< 0\end{cases}}\end{cases}}\)trường hợp 2 \(\Rightarrow\hept{\begin{cases}x-1< 0\\x+1< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x< -1\end{cases}}\)\(\Rightarrow x< -1\)

kết hợp 2 tập nghiệm ta có nghiệm là x>1 và x<-1

\(x^6-y^6\)

\(=\left(x^3\right)^2-\left(y^3\right)^2\)

\(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)

19 tháng 7 2019

\(x^6-y^6\)

\(=\left(x^3\right)^2-\left(y^3\right)^2\)

\(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)

16 tháng 12 2018

\(Taco:x\ne0.Vì:\frac{1}{x^3}\ne0;\)

\(f\left(x\right)_{min}\Leftrightarrow x=1=1+1=2\)