Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tui chưa nháp nhưng câu 1 thử nhân hết ra coi triệt tiêu bớt đc ko, mà chắc chắn là nhân ra sẽ mất cái 27x^3 rồi nên thành pt bậc 2 giải vô tư nhé, câu 2 tách hết ra cx lm đc vì nó là pt bậc 2
câu 3 tách thành (x+3)(x^2-7x+9)=0 có pt bậc 2 nên ok r
(3x - 2)(9x2 + 6x + 4) - (3x - 1)(9x2 - 3x + 1) = x - 4
<=> 27x3 - 8 - 27x3 + 1 = x - 4
<=> x - 4 = -7
<=> x = -3
Vậy S = {-3}
9(2x + 1) = 4(x - 5)2
<=> 4(x2 - 10x + 25) - 18x - 9 = 0
<=>4x2 - 40x + 100 - 18x - 9 = 0
<=> 4x2 - 58x + 91 = 0
<=> (4x2 - 58x + 210,25) - 119,25 = 0
<=> (2x - 14,5)2 = 119,25
<=> \(\orbr{\begin{cases}2x-14,5=\sqrt{119,25}\\2x-14,5=-\sqrt{119,25}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{29+3\sqrt{53}}{4}\\x=\frac{29-3\sqrt{53}}{4}\end{cases}}\)
Vậy S = {...}
x3 - 4x2 - 12x + 27 = 0
<=> (x3 + 3x2) - (7x2 + 21x) + (9x + 27) = 0
<=> x2(x + 3) - 7x(x + 3) + 9(x + 3) = 0
<=> (x2 - 7x + 9)(x + 3) = 0
<=> \(\orbr{\begin{cases}x-7x+9=0\\x+3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x^2-7x+12,25\right)-3,25=0\\x=-3\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x-3,5\right)^2=3,25\\x=-3\end{cases}}\)
<=> \(\orbr{\begin{cases}x-3,5=\sqrt{3,25}\\x-3,5=-\sqrt{3,25}\end{cases}}\)
hoặc x = -3
<=> \(\orbr{\begin{cases}x=\frac{7+\sqrt{13}}{2}\\x=\frac{7-\sqrt{13}}{2}\end{cases}}\)
hoặc x = -3
Vậy S = {...}
a) \(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2+3x+1\right)=x-4\)
\(\Leftrightarrow\left(3x\right)^3-2^3-\left(3x^3\right)+1=x-4\)
\(\Leftrightarrow x=13\)
9(2x+1)=4(x-5)2
<=> 18x+9=4(x2-10x+25)
<=> 4x2-58x+91=0
\(\Leftrightarrow x=\frac{29\pm3\sqrt{53}}{4}\)
x3-4x2-12x+27=0
<=> (x+3)(x2-7x+9)=0
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{7\pm\sqrt{13}}{2}\end{cases}}\)
a
\(ĐKXĐ:x\ne3;x\ne-3;x\ne0\)
b
\(A=\left(\frac{9}{x^3-9x}+\frac{1}{x+3}\right):\left(\frac{x-3}{x^2+3x}-\frac{x}{3x+9}\right)\)
\(=\left[\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right]:\left[\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right]\)
\(=\frac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\frac{3x-9-x^2}{3x\left(x+3\right)}\)
\(=\frac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\cdot\frac{3x\left(x+3\right)}{-\left(9-3x+x^2\right)}=\frac{-3}{x-3}\)
c
Với \(x=4\Rightarrow A=-3\)
d
Để A nguyên thì \(\frac{3}{x-3}\) nguyên
\(\Rightarrow3⋮x-3\)
Làm nốt.