K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2016

Ta có D=\(x^2-2.3x+9+\left(\frac{y}{2}\right)^2+2.\frac{1}{2}y.5+25+11\)

         D=\(\left(x-3\right)^2+\left(\frac{y}{2}+5\right)^2+11\)

ta có \(\left(x-3\right)^2\:\ge0\)với mọi x

      \(\left(\frac{y}{2}+5\right)^2\ge0\)với mọi y

nên \(D\ge11\)

vậy Min D=11 đạt được khi:

\(x-3=0\) =>x=3

\(\frac{y}{2}+5=0\) => y=-10

28 tháng 5 2021

Đặt  Q = \(\frac{x^3}{4\left(y+2\right)}+\frac{y^3}{4\left(x+2\right)}\)     = \(\frac{x^3\left(x+2\right)}{4\left(x+2\right)\left(y+2\right)}+\frac{y^3\left(y+2\right)}{4\left(x+2\right)\left(y+2\right)}\)

  

        Q = \(\frac{x^4+y^4+2x^3+2y^3}{4\left(x+2\right)\left(y+2\right)}\)       = \(\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(xy+2x+2y+4\right)}\)

        Q = \(\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(2x+2y+8\right)}\)       =   \(\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\)

  

   Áp dụng bất đẳng thức  AM-GM ta có:

  \(x^4+y^4\ge2\sqrt{x^4y^4}=2x^2y^2\)

  \(x^2+y^2\ge2\sqrt{x^2y^2=}2xy\)

\(\Leftrightarrow\)Q =  \(\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\ge\frac{2x^2y^2+2xy\left(x+y\right)}{8\left(x+y+4\right)}=\frac{2xy\left(xy+x+y\right)}{8\left(x+y+4\right)}\)

\(\Leftrightarrow\)Q =  \(\frac{8\left(x+y+4\right)}{8\left(x+y+4\right)}\)\(1\)

Đẳng thức xảy ra : \(\Leftrightarrow\hept{\begin{cases}x,y>0\\x=y\Rightarrow\\xy=4\end{cases}x=y=2}\)

Vậy giá trị nhỏ nhất của Q là 1 \(\Leftrightarrow x=y=2\)

6 tháng 6 2021

CMR: \(\left(2+\sqrt{3}\right)^{2021}+\left(2-\sqrt{3}\right)^{2021}⋮4\)

đặt \(a=2+\sqrt{3}\)\(b=2-\sqrt{3}\)

 suy ra: \(a+b=2+\sqrt{3}+2-\sqrt{3}=4\)

và : \(ab=\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=1\)

Ta có: \(a^{2021}+b^{2021}=\left(a+b\right)\left(a^{2020}-a^{2019}b+a^{2018}b^2-...+a^{1010}b^{1010}-...-ab^{2019}+b^{2020}\right)\)

\(=\left(a+b\right)\left(a^{2020}-a^{2018}ab+a^{2016}a^2b^2-...+a^{1010}b^{1010}-...-abb^{2018}+b^{2020}\right)\)

Vì \(a+b=4\);\(ab=1\)nên:

\(a^{2021}+b^{2021}=4\left(a^{2020}-a^{2018}+a^{2016}-...+1-...-b^{2018}+b^{2020}\right)\)

\(=4\left(a^{2020}+b^{2020}-\left(a^{2018}+b^{2018}\right)+a^{2016}+b^{2016}-...+1\right)\)

\(=4\left(\left(a+b\right)^{2020}-2\left(ab\right)^{1010}-\left(a+b\right)^{2018}+2\left(ab\right)^{1009}+\left(a+b\right)^{2016}-2\left(ab\right)^{1008}-...+1\right)\)\(=4\left(4^{2020}-2-4^{2018}+2+4^{2016}-2-...+1\right)\)

\(=4S\)(Với \(S\inℕ^∗\))

suy ra \(a^{2021}+b^{2021}=4S⋮4\)

Vậy \(\left(2+\sqrt{3}\right)^{2021}+\left(2-\sqrt{3}\right)^{2021}⋮4\left(đpcm\right)\)

20 tháng 9 2019

khó quá đây là toán lớp mấy

19 tháng 9 2019

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?

5 tháng 6 2021

Đây là câu bđt của chuyên Quảng Nam vừa thi mà:vvv

Ta có: \(xy+yz+zx=xyz\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\left(a,b,c>0\right)\)

Khi đó: \(H=\frac{a}{9b^2+1}+\frac{b}{9c^2+1}+\frac{c}{9a^2+1}\)

\(=\left(a+b+c\right)-\left(\frac{9ab^2}{9b^2+1}+\frac{9bc^2}{9c^2+1}+\frac{9ca^2}{9a^2+1}\right)\)

\(\ge1-\left(\frac{9ab^2}{6b}+\frac{9bc^2}{6c}+\frac{9ca^2}{6a}\right)\)

\(=1-\frac{3}{2}\left(ab+bc+ca\right)\ge1-\frac{3}{2}\cdot\frac{\left(a+b+c\right)^2}{3}=1-\frac{3}{2}\cdot\frac{1}{3}=\frac{1}{2}\)

Dấu "=" xảy ra khi: \(x=y=z=3\)

Vậy Min(H) = 1/2 khi x = y = z = 3

12 tháng 3 2020

\(T=x^2-xy+y^2\)

\(=\left(x^2-xy+\frac{y^2}{4}\right)+\frac{3y^2}{4}\)

\(=\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}\)

\(\ge\frac{3y^2}{4}\)

\(\ge0\)

Dấu "=" xảy ra khi x=y=0

11 tháng 3 2019

theo de bai =>\(2y>=2\sqrt{xy.4}\)(co si)

=>\(\frac{\sqrt{y}}{\sqrt{x}}>=2\)=>\(\frac{y}{x}>=4\)

ta co \(A=\frac{x}{y}+\frac{2y}{x}\)đặt \(\frac{y}{x}=a\)

=>\(A=\frac{1}{a}+2a=\frac{1}{a}+\frac{a}{16}+\frac{31}{16}a>=\frac{1}{2}+\frac{31}{4}=\frac{66}{8}=\frac{33}{4}\)

<=>y=4x

16 tháng 8 2020

bài này có lập được bảng biến thiên, nhưng chắc chưa học nên làm cách cơ bản

ta có \(\frac{x^2}{x^2+yz+x+1}\le\frac{x^2}{2x\sqrt{yz+1}+x}=\frac{x}{2\sqrt{yz+1}+1}\) dấu "=" xảy ra khi x2=yz+1

ta lại có \(2=x^2+y^2+z^2=\left(x+y+z\right)^3-2x\left(y+z\right)-2yz\ge\left(x+y+z\right)^3-\frac{\left(x+y+z\right)^2}{2}-2yz\)

\(\Rightarrow\left(x+y+z\right)^2\le4\left(1+yz\right)\Rightarrow x+y+z\le2\sqrt{1+yz}\)

\(\Rightarrow\frac{y+z}{x+y+z+1}=1-\frac{x+1}{x+y+z+1}\le1-\frac{x+1}{2\sqrt{yz+1}+1}\)

do đó \(P\le\frac{x}{2\sqrt{yz+1}+1}+1-\frac{x+1}{2\sqrt{yz+1}+1}-\frac{1+yz}{9}=1-\frac{1}{2\sqrt{yz+1}+1}-\frac{1+yz}{9}\)

\(\le1-\frac{1}{yz+1+1+1}-\frac{1+yz}{9}=\frac{11}{9}-\left(\frac{1}{yz+3}+\frac{yz+3}{9}\right)\le\frac{11}{9}-\frac{2}{3}=\frac{5}{9}\)

dấu "=" xảy ra khi \(\orbr{\begin{cases}x=1;y=1;z=0\\x=1;y=0;z=1\end{cases}}\)