Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm các số nguyên x,y,z thỏa mãn các điều kiện sau:
x2=y-1
y2=z-1
z2=x-1
Mình cần gấp!!!Giúp với!!!!!!!!
ta có
|x-2| > 0
(x^2-2)^2014 > 0
=> để |x-2|+(x^2-2)^2014=0 thì
\(\hept{\begin{cases}x-2=0\\\left(x^2-2\right)=0\end{cases}}\)
=> \(\hept{\begin{cases}x=2\\x^2=2\end{cases}}\)
=>\(\hept{\begin{cases}x=2\\x=\sqrt{2}\end{cases}}\)
Tham khảo: https://olm.vn/hoi-dap/detail/103429897807.html
hok tốt!!
Ta có : x2 – 2x + 1 = 6y2 - 2x + 2
\(\Rightarrow\) x2 – 1 = 6y2 \(\Rightarrow\) 6y2 = ( x - 1 ) . ( x + 1 ) chia hết cho 2 , do 6y2 chia hết cho 2 .
Mặt khác x - 1 + x + 1 = 2x chia hết cho 2 \(\Rightarrow\) ( x - 1 ) và ( x + 1 ) cùng chẵn hoặc cùng lẻ .
Vậy ( x - 1 ) và ( x + 1 ) cùng chẵn \(\Rightarrow\) ( x - 1 ) và ( x + 1 ) là hai số chẵn liên tiếp .
( x - 1 ) . ( x + 1 ) chia hết cho 8 \(\Rightarrow\) 6y2 chia hết cho 8 \(\Rightarrow\) 3y2 chia hết cho 4 \(\Rightarrow\) y2 chia hết cho 4 \(\Rightarrow\) y chia hết cho 2
y = 2 ( y là số nguyên tố )
Tìm được x = 5 .
\(5^x+5^{x+2}=650;5^x.26=650;5^x=25;x=2\)
\(2^x+2^{x+3}=144;2^x.9=144;2^x=16;x=4\)
\(3^{x-1}+5.3^{x-1}=162;3^{x-1}.6=162;3^{x-1}=27;x=4\)
\(\left(x-5\right)^4=\left(x-5\right)^6\)
\(\rightarrow x-5=0\&x-5=1\) hoặc x - 5 = - 1
\(x-5=1;x=6;x-5=0;x=5;x-5=-1;x=4\)
\(\left(2^2:4\right).2^n=4;2^n=2^2;n=2\)
có cái cc ý, ở đâu thằng Khoa chó kia,,,,hâhahahs mai tao nói vs thầy nhá!!!!bạn bè mà đôi khi phản tí!!!!hìhì,,,vui lắm đây<<<3 ngày nx sẽ có cái đó về con Hương quay bàiiiii!!!Huơng sẽ tl thek nào,,,thật đơn giản là tao chỉ nói nó là''viết đè lên vở mak quay tạm''k ngờ lợi dụng bốc thâtjjj,,,cú ức chế lắm rồi thằng Hậu chó nó lẻo mép làm đến tai con M.Hương là kiểu j chết cả lũ chúng mk,,,,tao cx quay nhưng do hối lộ nên Hậu k mách!!ahahhahhaha,tội nghiệp con Hương bị sui dại ,,.;;vui quá!!!!!!
Ta có
\(12-2^x+5=-20\)
<=>\(17-2^x=-20\)
=>Sai đề bạn à.
b,
68-4x=2x+2^19:2^16
<=>68-4x=2x+8
<=>6x=60
<=>x=10
Tick mình nha bạn.
Chúc bạn một năm mới vui vẻ ,hạnh phúc, may mắn, học giỏi...