K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2019

A M B C H K

a) Chứng minh MH=MK

Xét tam giác AMH và tam giac AMK có

AM cạnh chung

\(\widehat{MAH}=\widehat{MAK}\)(AM là tia phân giác của \(\widehat{BAC}\))

=> Tam giác AMH = tam giác AMK

=> MH=MK (đpcm)

b) Chứng minh tam giác ABC cân

Ta có M là trung điểm của BC (gt)

Nên AM là đường trung tuyến ứng cạnh BC

Mà AM cũng là đưởng phân giác ứng cạnh BC (gt)

Do đó tam giác ABC cân tại A (đpcm)

Kết bạn với mình nha :)

6 tháng 3 2020

Câu b, c, thôi cx được ạ

11 tháng 8 2020

BẠN TỰ VẼ HÌNH NHÉ !!!!!!!

a) Tam giác ABD và tam giác BDE có BAD=BED=90 độ; ABD=EBD (Do BD là tia p/g)

=> góc ADB = góc EDB

Xét tam giác ABD và tam giác EBD có: 

\(\hept{\begin{cases}ABD=EBD\\BAD=BED=90\\ADB=BDE\left(cmt\right)\end{cases}}\)

=> Tam giác ABD = tam giác EBD (gcg) => ĐPCM

b) Vì: Tam giác ABD = tam giác EBD (gcg)

=> AD=DE; AB=BE

=> 2 điểm B; D đều cách đều AE

=> BD là trung trực của AE. 

=> ĐPCM

11 tháng 8 2020

c) 

c) Có: AD=DE.

Mà: \(DE^2+BE^2=BD^2\)

=> \(BD^2>DE^2\)

=> \(BD>DE\)

=> \(BD>AD\)    (3) 

Mà: BDC là góc ngoài của tam giác ABD

=>  góc \(BDC=A+ABD=90+ABD\)

=> góc BDC > 90 độ (1)

Mà góc C + góc EDC = 90 độ 

=> góc C < 90 độ (2)

TỪ (1) VÀ (2) => góc BDC > góc C

=>  Theo tính chất giữa góc và cạnh thì: BC > BD      (4)

TỪ (3) VÀ (4) => \(BC>AD\)

VẬY TA CÓ ĐPCM.

d) Xét tam giác ADF và tam giác EDC có: 

\(\hept{\begin{cases}AF=CE\\ADC=EDC\left(dd\right)\\AD=ED\left(cmt\right)\end{cases}}\)

=>Tam giác ADF=Tam giác EDC (cgc)

=> góc DFA = góc DCE 

Mà: BAC=90 độ (gt) 

=> góc ACB + góc ABD= 90 độ

=> góc DFA + ABC =90 đọ

=> FEB=90 độ

=> D,E,F thẳng hàng

* Xét tam giác BFC có: EF vuông góc BC (CMT) ; CA vuông góc BF (gt) ; EF giao CA ={D}

=> Theo định lí đảo của trực tâm thì BD vuông góc CF

VẬY TA CÓ ĐPCM

27 tháng 2 2020

a) Xét \(\Delta\)ADI và \(\Delta\)AHI có:

     AD = AH (gt)

     DI = HI (gt)

    AI: cạnh chung

Do đó \(\Delta\)ADI = \(\Delta\)AHI (c.c.c)

b) Xét \(\Delta\)AHC vuông tại D và \(\Delta\)ABC vuông tại A có ^C chung nên ^HAC = ^B

\(\Delta\)ABC vuông tại A có ^C = 300 nên ^B = 600

Vậy ^HAC = 600

\(\Delta\)AHD có ^HAC = 600 và AH = AD nên \(\Delta\)AHD đều (đpcm)

c)  \(\Delta\)ADI = \(\Delta\)AHI (cmt) suy ra ^DAI = ^HAI (hai góc tương ứng)

Xét \(\Delta\)ADK và \(\Delta\)AHK có:

     AD = AH (gt)

     ^DAI = ^HAI (cmt)

    AK: cạnh chung

Do đó  \(\Delta\)ADK = \(\Delta\)AHK (c.g.c)

=> ^ADK = ^AHK = 900 (hai góc tương ứng)

Kết hợp với AB vuông góc AC suy ra AB//KD (đpcm)

d) Chứng minh được: \(\Delta\)AHB = \(\Delta\)EHK (c.g.c)

=> ^HAB = ^HEK => KE // AB

Khi đó qua K có hai đường thẳng KD, KE song song với AB (trái với tiên đề Ơ - cơ - lít)

Vậy KD trùng KE hay D,K,E thẳng hàng (đpcm)