Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A M B C H K
a) Chứng minh MH=MK
Xét tam giác AMH và tam giac AMK có
AM cạnh chung
\(\widehat{MAH}=\widehat{MAK}\)(AM là tia phân giác của \(\widehat{BAC}\))
=> Tam giác AMH = tam giác AMK
=> MH=MK (đpcm)
b) Chứng minh tam giác ABC cân
Ta có M là trung điểm của BC (gt)
Nên AM là đường trung tuyến ứng cạnh BC
Mà AM cũng là đưởng phân giác ứng cạnh BC (gt)
Do đó tam giác ABC cân tại A (đpcm)
Kết bạn với mình nha :)
BẠN TỰ VẼ HÌNH NHÉ !!!!!!!
a) Tam giác ABD và tam giác BDE có BAD=BED=90 độ; ABD=EBD (Do BD là tia p/g)
=> góc ADB = góc EDB
Xét tam giác ABD và tam giác EBD có:
\(\hept{\begin{cases}ABD=EBD\\BAD=BED=90\\ADB=BDE\left(cmt\right)\end{cases}}\)
=> Tam giác ABD = tam giác EBD (gcg) => ĐPCM
b) Vì: Tam giác ABD = tam giác EBD (gcg)
=> AD=DE; AB=BE
=> 2 điểm B; D đều cách đều AE
=> BD là trung trực của AE.
=> ĐPCM
c)
c) Có: AD=DE.
Mà: \(DE^2+BE^2=BD^2\)
=> \(BD^2>DE^2\)
=> \(BD>DE\)
=> \(BD>AD\) (3)
Mà: BDC là góc ngoài của tam giác ABD
=> góc \(BDC=A+ABD=90+ABD\)
=> góc BDC > 90 độ (1)
Mà góc C + góc EDC = 90 độ
=> góc C < 90 độ (2)
TỪ (1) VÀ (2) => góc BDC > góc C
=> Theo tính chất giữa góc và cạnh thì: BC > BD (4)
TỪ (3) VÀ (4) => \(BC>AD\)
VẬY TA CÓ ĐPCM.
d) Xét tam giác ADF và tam giác EDC có:
\(\hept{\begin{cases}AF=CE\\ADC=EDC\left(dd\right)\\AD=ED\left(cmt\right)\end{cases}}\)
=>Tam giác ADF=Tam giác EDC (cgc)
=> góc DFA = góc DCE
Mà: BAC=90 độ (gt)
=> góc ACB + góc ABD= 90 độ
=> góc DFA + ABC =90 đọ
=> FEB=90 độ
=> D,E,F thẳng hàng
* Xét tam giác BFC có: EF vuông góc BC (CMT) ; CA vuông góc BF (gt) ; EF giao CA ={D}
=> Theo định lí đảo của trực tâm thì BD vuông góc CF
VẬY TA CÓ ĐPCM
a) Xét \(\Delta\)ADI và \(\Delta\)AHI có:
AD = AH (gt)
DI = HI (gt)
AI: cạnh chung
Do đó \(\Delta\)ADI = \(\Delta\)AHI (c.c.c)
b) Xét \(\Delta\)AHC vuông tại D và \(\Delta\)ABC vuông tại A có ^C chung nên ^HAC = ^B
\(\Delta\)ABC vuông tại A có ^C = 300 nên ^B = 600
Vậy ^HAC = 600
\(\Delta\)AHD có ^HAC = 600 và AH = AD nên \(\Delta\)AHD đều (đpcm)
c) \(\Delta\)ADI = \(\Delta\)AHI (cmt) suy ra ^DAI = ^HAI (hai góc tương ứng)
Xét \(\Delta\)ADK và \(\Delta\)AHK có:
AD = AH (gt)
^DAI = ^HAI (cmt)
AK: cạnh chung
Do đó \(\Delta\)ADK = \(\Delta\)AHK (c.g.c)
=> ^ADK = ^AHK = 900 (hai góc tương ứng)
Kết hợp với AB vuông góc AC suy ra AB//KD (đpcm)
d) Chứng minh được: \(\Delta\)AHB = \(\Delta\)EHK (c.g.c)
=> ^HAB = ^HEK => KE // AB
Khi đó qua K có hai đường thẳng KD, KE song song với AB (trái với tiên đề Ơ - cơ - lít)
Vậy KD trùng KE hay D,K,E thẳng hàng (đpcm)