K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2020

A B C D H

Hình chưa chính xác lắm nhé :>

\(a)\) Xét \(\Delta ABD\)và \(\Delta HBD\)có:

\(\widehat{BAD}=\widehat{BHD}\left(=90^o\right)\)

\(BD\): chung

\(\widehat{ABD}=\widehat{HBD}\) (\(BD\)\(\widehat{ABH}\))

\(\Rightarrow\Delta ABD=\Delta HBD\left(ch-gn\right)\)

\(\Rightarrow BA=BH\) (2 cạnh tương ứng)

\(b)\)Xét \(\Delta DHC\)vuông tại \(H\)

\(\Rightarrow DC^2=HD^2+HC^2\) (định lí Pythagoras)

\(\Rightarrow DC^2>DH^2\)

\(\Rightarrow DC>DH\)

Ta có:

\(\Delta ABD=\Delta HBD\left(ch-gn\right)\)

\(\Rightarrow DA=DH\) (2 cạnh tương ứng)

Mà \(DC>DH\)

\(\Rightarrow DC>DA\)

6 tháng 3 2020

Câu b, c, thôi cx được ạ

27 tháng 2 2020

A B C E D H I

Xét tam giác BCD và tam giác CBE

có BC chung

góc CDB = góc CEB=900

góc EBC=góc DCB ( vì tam giác ABC cân tại A)

suy ra tam giác BCD = tam giác CBE ( cạnh huyền-góc nhọn)  (1)

b)  Từ (1) suy ra góc CBD=góc BCE ( hai góc tương ứng) (2)

Mà góc CBD + góc DBE= góc CBE  (3)

góc BCE+góc ECD = góc BCD  (4) 

góc EBC=góc DCB ( vì tam giác ABC cân tại A)  (5)

Từ (2), (3), (4) , (5) suy ra góc DCE=góc EBD

hay góc IBE = góc ICD

c) Từ (1) suy ra AE=AD (hai cạnh tương ứng)

Xét tam giác vuông ADI và tam giác vuông AEI có 

AI chung, AD=AE (CMT)

suy ra tam giá ADI = tam giác  AEI (cạnh huyền-cạnh góc vuông)

suy ra góc EAI = góc DAI (hai góc tương ứng)

suy ra AI là  tia phân giác của góc BAC

mà tam giác ABC cân tại A

suy ra AI là đường phân giác đồng thời là đường cao

AI vuông góc với BC tại H 

7 tháng 7 2015

B2 : Hình dễ bạn tử kẻ hình nhá !

a)Ta có AH là đường cao

=> Góc AHB = AHC = 90o

 Xết tam giác AHB có :

BAH + AHB + HBA = 180o ( tổng 3 góc trong 1 tam giác )

=> BAH + 90+ 70=180o

=> BAH = 180o-70o-90o

=> BAH = 20o

Xét tam giác AHC cps  :

AHC + HAC + HCA = 180o

=> 90 + HAC + 30 = 180

=> HAC = 180-30-90=60o

b) Ta có AD  là đường phân giác 

=> ABD= CAD = 80/2 = 40o

Xét tam giác ADB có :

ABD + BDA +DAB = 180

=> 70 + BDA + 40 = 180

=> BDA = 180-40-70 = 70

Xét tam giác ADC có : 

ACD + CDA + DAC = 180

=> 30 + CDA + 40 = 180

=> CDA = 180-40-30

=> CDA=110

( **** )

7 tháng 7 2015

từng bài một thôi như này thì ngứa mắt lắm anh em ơi

Bài 1) 

a) Xét ∆ vuông ABK và ∆ vuông EBK ta có : 

AK = KC 

BK chung 

=> ∆ABK = ∆EBK ( ch-cgv)

=> AB = BE

=> ∆ABE cân tại B 

Mà ABK = EBK 

Hay BK là phân giác ABE 

=> ∆ABE cân có BK là phân giác 

=> BK là trung tuyến đồng thời là đường cao

=> BK\(\perp\)AE

b) Gọi H là giao điểm BK và DC 

Xét ∆ vuông AKD và ∆ vuông EKC ta có

AK = KE 

AKD = EKC ( đối đỉnh) 

=> ∆AKD = ∆EKC ( cgv-gn)

=> AD = EC ( tương ứng) 

Mà ∆ABE cân tại B (cmt)

=> AB = AE 

Mà AB + AD = BD 

BE + EC = BC 

=> BD = BC 

=> ∆BDC cân tại B 

=> BDC = \(\frac{180°-B}{2}\)

Vì ∆ABE cân tại B 

=> BAE = \(\frac{180°-B}{2}\)

=> BAE = BDC

Mà 2 góc này ở vị trí đồng vị 

=> AE//DC 

Vì H là giao điểm DC và BK

=> BH là phân giác DBC 

Mà ∆BDC cân tại B (cmt)

=> BK đồng thời là trung tuyến và đường cao

=> BH \(\perp\)DC

Hay BK \(\perp\)DC 

Bài 2)

Vì ∆ABC cân tại A

=> AB = AC 

=> ABC = ACB 

Xét ∆ vuông ABK và ∆ vuông ACE ta có : 

AB = AC 

A chung 

=> ∆ABK = ∆ACE ( ch-gn)

=> ABK = ACE ( tương ứng) 

Xét ∆AOB và ∆AOC ta có : 

AB = AC 

ABK = ACE 

AO chung

=> ∆AOB = ∆AOC (c.g.c)

=> BAO = CAO 

Hay AO là phân giác BAC 

b) Vì ∆AKB = ∆AEC (cmt)

=> AE = AK 

Mà AB = AC 

=>EB = KC

Xét ∆ vuông KOC và ∆ vuông EOB ta có 

EB = KC 

EOB = KOC ( đối đỉnh) 

=> ∆KOC = ∆EOB ( cgv-gn)

=> OB = OC 

=> ∆OBC cân tại O 

c) Xét ∆ cân ABC ta có :

AO là phân giác BAC 

AI là trung tuyến BC 

=> AI đồng thời là phân giác và là đường cao

=> A , O , I thẳng hàng

12 tháng 5 2021

Cho tam giác  ABC  vuông tại A có AB=6 cm , AB =8cm . Trên BA lấy  điểm D sao cho BD=BC .Từ D kẻ DE vuông góc với BC tại E (E thuộc BC)

a)Tính độ dài cạnh BC

b)Chứng minh tam giác BAC = BED

c) Gọi H là giao điểm của DE và CA. Chứng minh BH là tia phân giác của góc DBC

B A D H E C

a) Xét \(\Delta ABC\) vuông tại A có: \(BC^2=AB^2+AC^2\) (định lí Pytago)

\(\Rightarrow BC=6^2+8^2=100\)

\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)

Vậy \(BC=10cm\).

b) Xét \(\Delta BDE\) và \(\Delta ABC\) có:

\(\widehat{BAC}=\widehat{BED}=90^o\)

\(AB=AC\left(gt\right)\)

\(\widehat{B}\) chung

\(\Rightarrow\Delta ABC=\Delta EBD\) (cạnh huyền - góc nhọn)   (đpcm)

c) Xét \(\Delta BCD\) có:

2 đường cao CA và DE cắt nhau tại H

\(\Rightarrow\)H là trực tâm của \(\Delta BCD\)

\(\Rightarrow BH\) là đường cao của \(\Delta BCD\)  (1)

Vì AB = AC nên \(\Delta BCD\) cân tại B  (2)

Từ (1), (2) \(\Rightarrow\) BH là đường cao đồng thời là tia phân giác của \(\widehat{CBD}\)   (đpcm)

12 tháng 5 2021

các bạn ơi AC=8cm nhá 

  MÌNH  nghi bài náy sai đề mà cô hốí quá......giúp mình vs

15 tháng 12 2019

a,Xét tam giác ABM và tam giác EBM có :

AB = BE (gt)

góc B1 =góc B2(gt)

BM:cạnh chung

Suy ra tam giác ABM = tam giác EBM(c-g-c)

b,Do tam giác ABM = tam giác EBM ( cm câu a)

Suy ra AM = EM ( cặp cạnh tương ứng )

c,Do tam giác ABM = tam giác EBM ( cm câu a)

Suy ra góc BAM = góc BEM ( cặp cạnh tương ứng )

Mà góc BAM = 90 độ

Suy ra góc BEM = 90 độ

Bài làm đúng 100% đó,chúc bạn học tốt nhé!^.<

a) Xét \(\Delta\)ACE và \(\Delta\)AKE có :

  • CÂE = KÂE ( vì AE là phân giác )
  • AE : cạnh chung
  • Góc ACE = góc AKE ( = 90 độ )

\(\Rightarrow\)\(\Delta\)ACE = \(\Delta\)AKE ( cạnh huyền - góc nhọn )

\(\Rightarrow\)AC = AK ( hai cạnh tương ứng ) ( đpcm )

\(\Rightarrow\)A nằm trên đường trung trực của CK ( 1 )

Ta lại có : CE = KE ( vì \(\Delta\)ACE = \(\Delta\)AKE )

   \(\Rightarrow\)E nằm trên đường trung trực của CK ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)AE\(\perp\)CK ( đpcm )

3 tháng 2 2019

tự vẽ hình-câu a bạn kia làm r thì t làm câu b tiếp nha :)

b) Tam giác BEK có:  góc B + góc E + góc K =180 độ

Tam giác KEA có : góc K+góc A+góc E=180 đôk

Mà góc EKA=BKE=90 độ, góc EBK=Góc KAE=30 độ

=> Góc BEK= góc KEA

Xét tam giác BEK và tam giác AEK, ta có:

EK là cạnh chung

góc EKA=BKE=90 độ

Góc BEK= góc KEA(cmt)

Vậy tam giác BEK = tam giác AEK(g-c-g)

=> AK=BK(cặp cạnh t/ứng)

BE=AE(cặp cạnh t/ứng)

c) Áp dụng định lí pytago vào tam giác vuông CEA. ta có:

EC2+CA2=AE2=> AE2-EC2=CA2=> AE2>CA2=> AE>CA

mà AE=BE(cmt) => BE>AC

câu d t chịu >: