Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3a + 2b chia hết cho 17
=> 3a + 2b = (3 + 2)(a + b) = 5(a + b) chia hết cho 17
=> 10a + b = 10 / 5(a + b) chia hết cho 17
=> 5(a + b) chia hết cho 17
=> điều cần chứng minh
Ta có: 3a+2b chia hết cho 17
17a chia hết cho 17
suy ra 3a+2b+17a=20a+2b=(10a+b).2 chia hết cho 17
Mà 2 nguyên tố với 17 nen 10a+b chia hết cho 17(ĐPCM)
Chứng minh rằng : 10a+b chia hết cho 7 hay chia hết cho 17 vậy
\(\text{Ta có :}2(10a+b)-(3a+2b)=20a+2b-3a+2b\)
\(=17a\)
Vì 17 chia hết cho 17 nên 17a chia hết cho 17
\(\Rightarrow2(10a+b)-(3a+2b)⋮17\)
Vì 3a + 2b chia hết cho 17 \(\Rightarrow2(10a+b)⋮17\)
Mà \((2;17)=1\)nên \(10a+b⋮17\)
Vậy nếu 3a + 2b chia hết cho 17 thì 10a + b chia hết cho 17
ta có :2.(10a+b)=20a+2b-3a-2b=17a
vì 17 chia hết cho 17 =>17a chia hết cho 17
=> 2.(10a+b)-(3a+2b)chia hết cho 17
vì 3a+2b chia hết cho 17 => 2(10a+b) chia hết cho 17
mà( 2,17) =1=>10a+b chia hết cho 17
vậy nếu 3a+2b chia hết cho 17 thì 10a+b chia hết cho 17
a)Ta có: (2x+3y) chia hết cho 17 => 4(2x+3y) chia hết cho 17 => 8x+12y chia hết cho 17
Ta có: 8x+12y+9x+5y
= 17x+17y=17(x+y) chia hết cho 17
Mà 8x+12y chia hết cho 17 => 9x+5y chia hết cho 17 => đpcm.
b)ta có a+4b chia hết cho 13
=> a+4b+13a sẽ chia hết cho 13
hay 14a+4b chia hết cho 13
=> 4(10a+b)chia hết cho 13
mà 4 ko chia hết cho 13 nên 10a+b chia hết cho 13
a)5\(^5\)-5\(^4\)+5\(^3\)=5\(^3\)x5\(^2\)-5\(^3\)x5\(^1\)+5\(^3\)x1=\(5^3\)x(\(5^2-5^1+1\))=\(5^3\)x121
Trong câu hỏi tương tự nha !!!
3a+2b=20a+2b-17a
=2.(10a+b)-17a
Vì 17a chia hết cho 17 và 3a+2b chia hết cho 17 nên:
2.(10a+b) chia hết cho 17
=>10a+b chia hết cho 17
Vậy..................