K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2019

a) \(\frac{1}{x^2}+y^2\)xác định\(\Leftrightarrow x^2\ne0\Leftrightarrow x\ne0\)

b)\(5x+\frac{y}{x^2}+6x+10\)

xác định\(\Leftrightarrow x^2\ne0\Leftrightarrow x\ne0\)

b

17 tháng 12 2019

a) Phân thức xác định được \(\Leftrightarrow\hept{\begin{cases}2x+10\ne0\\x\ne0\\2x\left(x+5\right)\ne0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x+5\ne0\end{cases}}\)

Vậy...

17 tháng 12 2019

b) \(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)

=> \(P=\frac{x\left(x^2+2x\right)+2\left(x-5\right)\left(x+5\right)+50-5x}{2x\left(x+5\right)}\)

=> \(P=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)

=> \(P=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}=\frac{\left(x-1\right)}{2}\)

\(P=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)

15 tháng 12 2019

\(a,\)\(đkxđ\Leftrightarrow\)\(\hept{\begin{cases}x+3\ne0\\x-3\ne0\end{cases}}\)\(\Rightarrow x\ne\pm3\)

\(b,\)\(B=\frac{5}{x+3}+\frac{3}{x-3}-\frac{5x+3}{x^2-9}\)

\(=\frac{5\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{5x+3}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{5x-15+3x+9-5x-3}{\left(x-3\right)\left(x+3\right)}\)

\(=\frac{3x-9}{\left(x-3\right)\left(x+3\right)}=\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{3}{x+3}\)

\(c,\)Tại x = 6, ta có :

\(B=\frac{3}{x+3}=\frac{3}{6+3}=\frac{3}{9}=\frac{1}{3}\)

Vậy tại x = 6 thì B = 3 

\(d,\)Để \(B\in Z\Rightarrow\frac{3}{x+3}\in Z\Rightarrow x+3\inƯ_3\)

Mà \(Ư_3=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\)TH1 : \(x+3=1\Rightarrow x=-2\)

Th2: \(x+3=-1\Rightarrow x=-4\)

Th3 : \(x+3=3\Rightarrow x=0\)

TH4 \(x+3=-3\Rightarrow x=-6\)

Vậy để \(B\in Z\)thì \(x\in\left\{-6;-4;-2;0\right\}\)

15 tháng 12 2019

a)Để B đc xác định thì :x+3 khác 0

                                     x-3 khác 0

                                     x^2-9 khác 0

=>x khác -3

    x khác 3

b) Kết Qủa BT B là:3/x+3

7 tháng 1 2020

để M xác định 

\(\Rightarrow\orbr{\begin{cases}y-1\ne0\\y+1\ne0\end{cases}}\Rightarrow\frac{y\ne1}{y\ne-1}.\)

\(b,M=\frac{1}{y-1}+\frac{y}{y+1}+\frac{2y^2}{y^2-1}\)

\(M=\frac{y+1}{\left(y+1\right)\left(y-1\right)}+\frac{y\left(y-1\right)}{\left(y-1\right)\left(y+1\right)}+\frac{2y^2}{\left(y+1\right)\left(y-1\right)}\)

\(M=\frac{y+1-y^2+y+2y^2}{\left(y+1\right)\left(y-1\right)}=\frac{1+2y+y^2}{\left(y+1\right)\left(y-1\right)}=\frac{\left(1+y\right)^2}{\left(y+1\right)\left(y-1\right)}\)

\(M=\frac{y+1}{y-1}\)

c, Để M nhận giá trị nguyên 

\(\Rightarrow y+1⋮y-1\)

\(\Leftrightarrow y-1+2⋮y-1\)

\(\Rightarrow y-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

y = .... Tự tính 

16 tháng 12 2019

a

\(ĐKXĐ:x\ne3;x\ne-3;x\ne0\)

b

\(A=\left(\frac{9}{x^3-9x}+\frac{1}{x+3}\right):\left(\frac{x-3}{x^2+3x}-\frac{x}{3x+9}\right)\)

\(=\left[\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right]:\left[\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right]\)

\(=\frac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\frac{3x-9-x^2}{3x\left(x+3\right)}\)

\(=\frac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\cdot\frac{3x\left(x+3\right)}{-\left(9-3x+x^2\right)}=\frac{-3}{x-3}\)

c

Với \(x=4\Rightarrow A=-3\)

d

Để A nguyên thì \(\frac{3}{x-3}\) nguyên

\(\Rightarrow3⋮x-3\)

 Làm nốt.

16 tháng 12 2019

toi moi lop 5

a,P=\(\frac{x^2\left(x-3\right)+3\left(x-3\right)}{(x-3)^2}\)

=\(\frac{x^2+3}{x-3}\)

26 tháng 12 2019

a) Điều kiện xác định: \(x^2-6x+9=\left(x-3\right)^2\ne0\)

\(\Rightarrow x\ne3\)

ĐKXĐ: \(x\ne3\)

\(P=\frac{x^3-3x^2+3x-9}{x^2-6x+9}\)

\(P=\frac{\left(x-3\right)\left(x^2+3\right)}{\left(x-3\right)\left(x-3\right)}\)

\(P=\frac{x^2+3}{x-3}\)

b) +) x = 2

\(P=\frac{2^2+3}{2-3}=-7\)

+) x = -3 

\(P=\frac{\left(-3\right)^2+3}{-3-3}=1\)

AH
Akai Haruma
Giáo viên
14 tháng 7 2024

1.

a. $A=\frac{x^3-x+2}{x-2}=\frac{x^2(x-2)+2x(x-2)+4(x-2)+10}{x-2}$

$=x^2+2x+4+\frac{10}{x-2}$

Với $x$ nguyên, để $A$ nguyên thì $\frac{10}{x-2}$ là số nguyên. 

Khi $x$ nguyên, điều này xảy ra khi $10\vdots x-2$

$\Rightarrow x-2\in \left\{\pm 1; \pm 2; \pm 5; \pm 10\right\}$

$\Rightarrow x\in \left\{3; 1; 4; 0; 7; -3; 12; -8\right\}$

b.

\(B=\frac{2x^2+5x+8}{2x+1}=\frac{x(2x+1)+3x+8}{2x+1}=x+\frac{3x+8}{2x+1}\)

Với $x$ nguyên, để $B$ nguyên thì $3x+8\vdots 2x+1$

$\Rightarrow 2(3x+8)\vdots 2x+1$
$\Rightarrow 3(2x+1)+13\vdots 2x+1$

$\Rightarrow 13\vdots 2x+1$
$\Rightarrow 2x+1\in \left\{\pm 1; \pm 13\right\}$

$\Rightarrow x\in \left\{0; -1; 6; -7\right\}$

AH
Akai Haruma
Giáo viên
14 tháng 7 2024

Bài 2:

$P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}=\frac{(2x-1)^3}{(2x-1)^2}=2x-1$
Với $x$ nguyên thì $2x-1$ cũng là số nguyên.

$\Rightarrow P$ nguyên với mọi $x$ nguyên.

\(a,x^3-x^2-12x+45=0\)

\(\left(x-3\right)\left(x-3\right)\left(x+5\right)=0\)

\(x=3;3;-5\)

\(b,2x^3-5x^2+8x-5=0\)

\(\left(2x^2-3x+5\right)\left(x-1\right)=0\)

\(x=1\)

lm 1 câu đã chán ngắt , giải mấy câu nữa não tớ nổ bùmmm , tớ bt đây là trang web để hc nhưng tạo nên tiếng cười là chính nha ^^ 

28 tháng 10 2020

Bài 2:

a) \(x^2-y^2+3x-3y=\left(x^2-y^2\right)+\left(3x-3y\right)\)

\(=\left(x-y\right)\left(x+y\right)+3\left(x-y\right)=\left(x-y\right)\left(x+y+3\right)\)

b) \(5x-5y+x^2-2xy+y^2=\left(5x-5y\right)+\left(x^2-2xy+y^2\right)\)

\(=5\left(x-y\right)+\left(x-y\right)^2=\left(x-y\right)\left(x-y+5\right)\)

c) \(x^2-5x+4=x^2-x-4x+4=\left(x^2-x\right)-\left(4x-4\right)\)

\(=x\left(x-1\right)-4\left(x-1\right)=\left(x-1\right)\left(x-4\right)\)

a) (5x - 2y) (x2 - xy + 1)

=5x^3 − 5x^2y + 5x − 2x^2y  +2xy^2 − 2y

=5x^3 − 7x^2y + 2xy^2 + 5x − 2y

b) (x - 1) (x + 1) (x + 2) 

=(x^2−1)(x+2)

=x^3+2x^2−x−2

phần c) mình ko biết nha 

a) (5x - 2y) (x2 - xy +1)

= 5x3-5x2y+5x-2x2y+2xy2+2y

= 5x3 - 7x2y+2xy2+5x+2y

b) (x - 1) (x + 1) (x + 2)

= (x\(^2\) - 1)(x + 2)

= x3 +2x2 - x - 2

c) \(\frac{1}{2}\)x2y2 (2x+y)(2x-y)

 \(\frac{1}{2}\)x2y(4x2 - y2)

= 2x4y2 -  \(\frac{1}{2}\)x2y4