Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em nghĩ nếu làm như Lê Hồ Trọng Tín thì dấu "=" không xảy ra -> sai nên em xin chia sẻ cách làm của mình.Mong được mọi người góp ý.
Theo BĐT AM-GM
\(\sqrt{2019x\left(y+2\right)}=\sqrt{673}.\sqrt{3.x\left(y+2\right)}\)
\(\le\frac{\sqrt{673}}{2}\left[3+x\left(y+2\right)\right]=\frac{\sqrt{673}}{2}\left(3+xy+2x\right)\)
Tương tự với hai BĐT còn lại và cộng theo vế ta được:
\(M\le\frac{\sqrt{673}}{2}\left[9+\left(xy+yz+zx\right)+2\left(x+y+z\right)\right]\)
\(\le\frac{\sqrt{673}}{2}\left[9+\frac{\left(x+y+z\right)^2}{3}+6\right]\le\frac{\sqrt{673}}{2}\left(9+3+6\right)=6=9\sqrt{673}\)
Dấu "=" xảy ra khi x =y = z =1
Vậy...
Theo BĐT AM-GM:
\(\sqrt{2019x\left(y+2\right)}\)\(\le\)\(\frac{1}{2}\)(2019x+y+2)
\(\sqrt{2019y\left(z+2\right)}\)\(\le\)\(\frac{1}{2}\)(2019y+z+2)
\(\sqrt{2019z\left(x+2\right)}\)\(\le\)\(\frac{1}{2}\)(2019z+x+2)
=>M\(\le\)\(\frac{1}{2}\)[2019(x+y+z)+(x+y+z)+6]\(\le\)3033
Vậy MaxM=3033 <=>\(\hept{\begin{cases}2019x=y+2\\2019y=z+2\\2019z=x+2\end{cases}}\)
Ta có : \(\frac{x+y\sqrt{2021}}{y+z\sqrt{2021}}=\frac{a}{b}\left(a,b\inℕ^∗;\left(a,b\right)=1\right)\)
<=>\(bx-ay=\left(az-by\right)\sqrt{2021}\)
<=>\(\hept{\begin{cases}nx-ay=0\\az-by=0\end{cases}}\)<=>\(\frac{x}{y}=\frac{y}{z}=\frac{a}{b}\)=> xz = y2
Lại có : x2 + y2 + z2 = ( x + z )2 - 2xz + y2 = ( x + z )2 - y2 = ( x + z - y ) ( x + z + y )
Vì x + y + z > 1 và x2 + y2 + z2 là số ntố => \(\hept{\begin{cases}x^2+y^2+z^2=x+y+z\\x-y+z=1\end{cases}}\)<=> x = y = z = 1 ( tm )
Áp dụng BĐT AM - GM :
\(\sqrt{x}+\sqrt{x}+x^2\ge3\sqrt[3]{x^3}=3x\)
\(\sqrt{y}+\sqrt{y}+y^2\ge3y\)
\(\sqrt{z}+\sqrt{z}+z^2\ge3z\)
Cộng theo vế :
\(2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+x^2+y^2+z^2\ge3\left(x+y+z\right)=\left(x+y+z\right)^2\)
\(\Leftrightarrow2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\ge2\left(xy+yz+xz\right)\)
\(\Leftrightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\ge xy+yz+xz\)
Ta có đpcm
Dấu " = " xảy ra khi \(x=y=z=1\)
Chúc bạn học tốt !!!
đk: \(\hept{\begin{cases}x\ge\frac{3}{2}\\y\ge\frac{3}{2}\end{cases}}\)
Xét y = 0 => PT vô nghiệm
Xét y khác 0:
Ta có: \(x^3+y^3-8xy\sqrt{2\left(x^2+y^2\right)}+7x^2y+7xy^2=0\)
\(\Leftrightarrow x^3+y^3+7xy\left(x+y\right)=8xy\sqrt{2\left(x^2+y^2\right)}\)
\(\Leftrightarrow\frac{\left(x^3+y^3\right)}{y^3}+\frac{7xy\left(x+y\right)}{y^3}=\frac{8xy\sqrt{2\left(x^2+y^2\right)}}{y^3}\)
\(\Leftrightarrow\left(\frac{x}{y}\right)^3+1+7\cdot\frac{x}{y}\cdot\left(1+\frac{x}{y}\right)=8\cdot\frac{x}{y}\cdot\sqrt{2+2\left(\frac{x}{y}\right)^2}\)
Đặt \(\frac{x}{y}=t>0\) khi đó: \(PT\Leftrightarrow t^3+1+7t\left(1+t\right)=8t\sqrt{2\left(1+t^2\right)}\)
\(=\left[8t\sqrt{2\left(1+t\right)^2}-8t\left(t+1\right)\right]+8t\left(t+1\right)\)
\(\Leftrightarrow t^3-t^2-t+1=8t\cdot\frac{2\left(1+t^2\right)-\left(t+1\right)^2}{\sqrt{2\left(1+t^2\right)}+t+1}\)
\(\Leftrightarrow t^2\left(t-1\right)-\left(t-1\right)=8t\cdot\frac{2+2t^2-t^2-2t-1}{\sqrt{2\left(1+t^2\right)}+t+1}\)
\(\Leftrightarrow\left(t-1\right)^2\left(t+1\right)=8t\cdot\frac{\left(t-1\right)^2}{\sqrt{2\left(1+t^2\right)}+t+1}\)
\(\Leftrightarrow\left(t-1\right)^2\left[t+1-\frac{1}{\sqrt{2\left(1+t^2\right)}+t+1}\right]=0\)
Mà \(t+1-\frac{1}{\sqrt{2\left(1+t^2\right)}+t+1}=\frac{t\left(\sqrt{2\left(1+t^2\right)}+t+1\right)+\sqrt{2\left(1+t^2\right)}+t}{\sqrt{2\left(1+t^2\right)}+t+1}>0\)
\(\Rightarrow t-1=0\Leftrightarrow t=1\Leftrightarrow\frac{x}{y}=1\Rightarrow x=y\)
Khi đó \(\sqrt{y}-\sqrt{2x-3}+2x=6\)
\(\Leftrightarrow\sqrt{x}-\sqrt{2x-3}=6-2x\)
\(\Leftrightarrow\frac{x-2x+3}{\sqrt{x}+\sqrt{2x-3}}=2\left(3-x\right)\)
\(\Leftrightarrow\frac{3-x}{\sqrt{x}+\sqrt{2x-3}}=2\left(3-x\right)\)
\(\Leftrightarrow\left(x-3\right)\left(2-\frac{1}{\sqrt{x}+\sqrt{2x-3}}\right)=0\)
Nếu \(2-\frac{1}{\sqrt{x}+\sqrt{2x-3}}=0\)
\(\Leftrightarrow\frac{1}{\sqrt{x}+\sqrt{2x-3}}=2\)
\(\Leftrightarrow\sqrt{x}+\sqrt{2x-3}=\frac{1}{2}\)
\(\Leftrightarrow\sqrt{x}=\frac{\frac{13}{2}-2x}{2}\) (CMT)
\(\Leftrightarrow4\sqrt{x}=13-4x\)
\(\Leftrightarrow16x=169-104x+16x^2\)
\(\Leftrightarrow16x^2-120x+169=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y=\frac{15+2\sqrt{14}}{4}\\x=y=\frac{15-2\sqrt{14}}{4}\end{cases}}\)
Nếu \(x-3=0\Rightarrow x=y=3\)
Vậy ta có 3 cặp số (x;y) thỏa mãn: ...
Thử lại ta thấy cặp nghiệm vô tỉ:
\(x=y=\frac{15\pm2\sqrt{14}}{4}\) không thỏa mãn nên ta chỉ có 1 cặp nghiệm thỏa mãn:
\(x=y=3\)
Ta có: \(\frac{x-y\sqrt{2021}}{y-z\sqrt{2021}}=\frac{m}{n}\inℚ\left(m,n\inℤ,n\ne0\right)\Rightarrow nx-ny\sqrt{2021}=my-mz\sqrt{2021}\)\(\Rightarrow nx-my=\left(ny-mz\right)\sqrt{2021}\)
Vì x, y, z, m, n là các số nguyên nên \(nx-my\inℤ\)và \(ny-mz\inℤ\)
Khi đó: \(nx-my=0\)và \(ny-mz=0\)suy ra \(\frac{m}{n}=\frac{y}{z}=\frac{x}{y}\Rightarrow y^2=xz\)
Theo đề bài thì \(x^2+y^2+z^2\)là số nguyên tố hay \(x^2+2y^2+z^2-y^2=x^2+2zx+z^2-y^2=\left(x+z\right)^2-y^2=\left(x+y+z\right)\left(x+z-y\right)\)là số nguyên tố
Khi đó \(x+z-y=1\Leftrightarrow x+z=1+y\)
\(\Rightarrow x^2+z^2+2y^2=y^2+2y+1\Leftrightarrow\left(y-1\right)^2+x^2+z^2-2=0\)
Vì x, y, z là số nguyên dương nên x = y = z = 1