Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*:chia hết cho 2n-3
Vì 3n+1 chia hết cho 2n-3=>2(3n+1)hay6n+2 chia hết cho 2n-3 (1)
Vì 2n-3 chia hết cho 2n-3 =>3(2n-3) hay 6n-9 chia hết cho 2n-3 (2)
Từ (1) và (2) =>(6n+2)-(6n-9) *
=>6n+2-6n+9 *
=>6n-6n+2+9 *
=>0+11 *
=>11 *
2n-3 1 11
n 2 7
Tick mik nha
Potter Harry chép của oOo La Hét Trong Toa Loét oOo chứ gì, giỏi thì giải chi tiết ra giùm mik
\(A=\left(a+a^2\right)+\left(a^3+a^4\right)+....+\left(a^{2n-1}+a^{2n}\right)=a\left(1+a\right)+a^3\left(1+a\right)+...+a^{2n-1}\left(1+a\right)\)
\(=\left(a+1\right)\left(a+a^3+....+a^{2n-1}\right)\)
=> A chia hết cho a +1 với mọi n thuộc N
Vì 5n+1 chia hết cho 7 nên 5n+1 thuộc bội của 7.
Ta có: B(7)={0;7;14;21;...}
Mà 5n lại chia hết cho 5 nên 5n+1=21 (Có thể còn có thêm một số số khác nhưng vì đề bài ko nêu rõ phải tìm bao nhiêu n nên mình chỉ lấy 21 là số nhỏ nhất phù hợp với phần trên)
=>5n=21-1
=>5n=20
=>n=20:5
=>n=4
Vậy n=4
=>(n-1) la uoc cua 3
n-1=-1=>n=0
n-1=-3=>n=-2
n-1=1=>n=2
n-1=3=>n=4
tick cho mk
a) Ta có:
\(S=1+2+2^2+...+2^{119}\)
\(S=\left(1+2+2^2+2^3\right)+\left(2^3+2^4+2^5+2^6\right)+...+\left(2^{116}+2^{117}+2^{118}+2^{119}\right)\)
\(S=\left(1+2+2^2+2^3\right)+2^3\cdot\left(1+2+2^2+2^3\right)+...+2^{116}\cdot\left(1+2+2^2+2^3\right)\)
\(S=15+15\cdot2^3+...+15\cdot2^{116}\)
\(S=15\cdot\left(1+2^3+...+2^{116}\right)\) chia hết cho 5
b) \(S=1+2+2^2+...+2^{119}\)
\(\Rightarrow2S=2+2^2+2^3+...+2^{120}\)
\(\Rightarrow2S-S=\left(2+2^2+...+2^{120}\right)-\left(1+2+...+2^{119}\right)\)
\(\Leftrightarrow S=2^{120}-1\)
\(\Leftrightarrow2^n=S+1=2^{120}\)
\(\Rightarrow n=120\)
Ta có :2n+1=2n-6+7
mà 2n-6 chia hết cho n-3
=>7 chia hết cho n-3
=>n-3 thuộc Ư(7)={1;7}
Nếu n-3=1 thì n=4
Nếu n-3=7 thì n=10
Vậy n thuộc {4;10}