Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{x+1}.3^y=12^x\)
\(\Rightarrow2^{x+1}.3^y=3^x.4^x\)
\(\Rightarrow2^{x+1}.3^y=3^x.2^{2x}\)
\(\Rightarrow\orbr{\begin{cases}2^{x+1}=2^{2x}\\3^y=3^x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+1=2x\\y=x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\\text{Vì y = x}\Rightarrow y=1\end{cases}}\)
\(x-y=4\Leftrightarrow x=4+y\)ta có:
\(xy+z^2+4=0\)
\(\Rightarrow\left(y+4\right).y+z^2+4=0\)
\(\Leftrightarrow y^2+4y+4+z^2=0\)
\(\Leftrightarrow\left(y+2\right)^2+z^2=0\)
\(\Leftrightarrow\hept{\begin{cases}y+2=0\\z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-2\Rightarrow x=2\\z=0\end{cases}}\)
Vì x dương nên \(x^3+3x^2+5>x+3\)
hay \(5^y>5^z\Rightarrow5^y⋮5^z\)
\(\Rightarrow x^3+3x^2+5⋮x+3\)
\(\Rightarrow x^2\left(x+3\right)+5⋮x+3\)
Vì \(x^2\left(x+3\right)⋮x+3\)nên \(5⋮x+3\)
\(\Rightarrow x+3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Mà x + 3 > 3 ( do x dương ) nên x + 3 = 5 \(\Rightarrow x=2\)
\(\Rightarrow5^z=2+3=5\Leftrightarrow z=1\)
và \(5^y=8+12+5=25\Rightarrow y=2\)
Vậy x = 2; y = 2; z = 1
a, \(2^{x+1}.3^y=12^x\Rightarrow2^{x+1}.3^y=3^x.4^x\Rightarrow2^{x+1}.3^y=2^{2x}.3^x\)
=> x + 1 = 2x ; y = x
=> x = 1 ; y = x = 1
b, \(10^x:5^y=20^y\Rightarrow2^x.5^x:5^y=4^y.5^y\Rightarrow2^x.5^{x-y}=2^{2y}.5^y\)
=> x = 2y ; x- y = y => x = 2y
VẬy mọi số tự nhiên x,y đều thỏa mãn miễn x = 2y ( thử xem)
c, \(2^x=4^{y-1}\Rightarrow2^x=2^{2\left(y-1\right)}\Rightarrow x=2\left(y-1\right)\Rightarrow x=2y-2\)
\(27^y=3^{x+8}\Rightarrow3^{3y}=3^{x+8}\Rightarrow3y=x+8\Rightarrow3y=2y-2+6\)
=> 2y + 4 = 3y => y = 4 ;
x = 2.4 - 2 = 6
Đăng từng bài thoy nha pn!!!
Bài 1:
Có : 2009 = 2008 + 1 = x + 1
Thay 2009 = x + 1 vào biểu thức trên,ta có :
x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010
= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)
= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1
= -2
\(25-8\left(x-2016^2\right)=\left(y-1\right)^2.\)
\(Nx:\)\(8\left(x-2016\right)^2\ge0;\left(y-1\right)^2\ge0\)
\(\Rightarrow VT=\left(y-1\right)^2\Leftrightarrow8\left(x-2016\right)^2\le25\Rightarrow\left(x-2016\right)^2\le\frac{25}{8}\Rightarrow\left(x-2016\right)^2\le3\)
Mà \(\left(x-2016\right)^2\)là số chính phương \(\Rightarrow\orbr{\begin{cases}\left(x-2016\right)^2=1\\\left(x-2016\right)^2=0\end{cases}}\)
\(\left(x-2016\right)^2=1\Leftrightarrow\orbr{\begin{cases}x-2016=-1\Leftrightarrow x=2015\\x-2016=1\Leftrightarrow x=2017\end{cases}}\)
\(\left(x-2016\right)^2=0\Leftrightarrow x-2016=0\Leftrightarrow x=2016\)
\(Th1\left(x=2015;x=2017\right)\)
\(25-8=\left(y-1\right)^2\Leftrightarrow\left(y-1\right)^2=17\Leftrightarrow y-1=\sqrt{17}\Leftrightarrow y=\sqrt{17}+1\left(loại\right)\)
\(Th2\left(x=2016\right)\)
\(25-0=\left(y-1\right)^2\Leftrightarrow\left(y-1\right)=5\Leftrightarrow y=6\)
Vậy x = 2016 và y = 6