Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thôi mn ko cần trả lời đâu mk biết làm rùi nha mk chỉ khảo thui nhưng mà thui!
Ta có : a.bcd.abc = abcabc
=> a.bcd.abc = abc.1001
=> a.bcd = 1001 ( Vì \(abc\ne0\))
Vì a ; bcd đều là số tự nhiên mà a là số có 1 chữ số (\(a\ne0\))
Phân tích ra các thừa số ta đươc : 1001 = 7 . 13 .11
Dễ dàng nhận thấy a = 7
và bcd = 13.11
<=> bcd = 143
Vậy a = 7 ; b = 1 ; c = 4 ; d = 3
\(ab+bc+ca=abc\)
\(\Rightarrow\left(a.10+b\right)+\left(b.10+c\right)+\left(c.10+a\right)\)
\(=a.100+b.10+c\)
\(\Rightarrow11.\left(abc\right)\) \(=a.100+b.10+c\)
\(\Rightarrow b+10c=89a\)
\(\Rightarrow a=1\)
\(b=9\)
\(c=8\)
Đáp án:
ab+bc+ca=abc
ab=a.10+b
bc=b.10+c
ca=c.10+a
=>a.10+b+b.10+c+c.10+a=abc
hay:a.11+b.11+c.11=abc
a.11+b.11+c.11=a.100+b.10+c
trừ hai vế cho a.11;b.10 và c ta có:
b+c.10=a.89 cb=a.89
ta thấy:cb là số có hai chữ số. nên:a.89 là số có hai chữ số.
=>a=1 cb=89
hay:b=9;c=8
vậy:abc=198
a) ab - ba = ( 10a + b ) - ( 10b + a ) = 10a + b - 10b - a = ( 10a - a ) + ( b - 10b ) = 9a - 9b = 9( a - b ) chia hết cho 9
=> ab - ba chia hết cho 9
b) abcabc = abc . 1001 = abc . ( 7 . 13 . 11 ) chia hết cho 11
=> abcabc chia hết cho 11
c) aaa = a . 111 = a . ( 3 . 37 ) chia hết cho 37
=> aaa chia hết cho 37
6.
Ta có:
IxI+IyI+IzI=(x+y+z)-3=>x+y+z>IxI+IyI+IzI (1)
Nhận xét IxI>=x;IyI>=y;IzI>=z=>IxI+IyI+IzI>=x+y+z.=>bất đẳng thức (1) không xảy ra.
Vậy khoog tồn tại.
5.
3n+1 chia hết cho 2n+3=>2(3n+1) chia hết cho 2n+3
Ta có 2(3n+1)=6n+2=(6n+9)-7=3(2n+3)-7 chia hết cho 2n+3=>7 chia hết cho 2n+3
=>2n+3 thuộc Ư(7).Chú ý rằng sau khi tìm được x phải thử lại với 3n+1 chia hết cho 2n+3.
Ta có :
\(\overline{abbc}=\overline{ab}\times\overline{ac}\times7\)( 1 )
\(\Leftrightarrow100\times\overline{ab}+\overline{bc}=7\times\overline{ab}\times\overline{ac}\)
\(\Leftrightarrow\overline{ab}\left(7\times\overline{ac}-100\right)=\overline{bc}\)
\(\Leftrightarrow7\times\overline{ac}-100=\frac{\overline{bc}}{\overline{ab}}\)
Vì \(0< \frac{\overline{bc}}{\overline{ab}}< 10\)
\(\Leftrightarrow0< 7\times\overline{ac}-1000< 10\)
\(\Leftrightarrow100< 7\times\overline{ac< 110}\)
\(\Leftrightarrow14< \frac{100}{7}< \overline{ac}< \frac{110}{7}< 16\)
\(\Rightarrow\overline{ac}=15\)
Thay vào \(\left(1\right)\)ta được :
\(\overline{1bb5}=1b\times15\times7\)
\(\Leftrightarrow1005+110b=1050+105b\)
\(\Leftrightarrow5b=45\Leftrightarrow b=9\)
Vậy \(\hept{\begin{cases}a=1\\b=9\\c=5\end{cases}}\)
abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c thuộc N*
Giả sử : Cả 3 số a,b,c đều âm , suy ra abc < 0 ( trái gt )
=> Có ít nhất một số dương trong 3 số a,b,c
Do a,b,c bình đẳng, không mất tính tổng quát :
Giả sử : \(a>0\), mà \(abc>0,\) suy ra \(bc>0\)
\(TH1:b< 0;c< 0\), suy ra : \(b+c< 0\)
Mà : \(a+b+c>0\left(gt\right)\) \(\Rightarrow b+c>-a\)
Do : \(b+c< 0\), suy ra : \(\left(b+c\right)^2< -a\left(b+c\right)\)
\(\Rightarrow b^2+2bc+c^2< -ab-ac\)
\(\Rightarrow ab+ac+bc< -b^2-2bc-c^2+bc\)
\(\Rightarrow ab+bc+ac< -b^2-bc-c^2=-\left(b^2+bc+c^2\right)\)
Do : \(b^2+c^2\ge0;bc>0\)
\(\Rightarrow b^2+bc+c^2>0\)
\(\Rightarrow-\left(b^2+bc+c^2\right)< 0\)
Mà : \(ab+bc+ac< -\left(b^2+bc+c^2\right)\)
\(\Rightarrow ab+bc+ac< -\left(b^2+bc+c^2\right)< 0\)
\(\Rightarrow ab+bc+ac< 0\)( trái giả thiết : ab + bc + ac > 0 )
Suy ra : b <0, c< 0 ( vô lý )
\(\Rightarrow b,c>0\Rightarrow a,b,c>0\Rightarrow a,b,c\inℕ^∗\left(đpcm\right)\)