Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{3n+8}{n+2}=\frac{3n+4+4}{n+2}=\frac{3\left(n+2\right)+4}{n+2}=\frac{n+2}{n+1}+\frac{4}{n+2}=1+\frac{4}{n+2}\)
Suy ra n+2 thuộc Ư(4)
Ư(4)là:[1,-1,2,-2,4,-4]
ta có bảng sau:
n+2 | 1 | -1 | 2 | -2 | 4 | -4 |
n | --1 | -3 | 0 | -4 | 2 | -6 |
Mà n là số nguyên
Suy ra n=0;2
ủng hộ đầu xuân năm mới tròn 770 nha
n2 + 3n - 13 chia hết cho n + 3
=> n(n+3) - 13 chia hết cho n+3
Vì n(n+3) chia hết cho n+3
=> -13 chia hết cho n+3
=> n+3 thuộc Ư(-13)
=> n+3 thuộc {-13; -1; 1; 13}
=> n thuộc {-16; -4; -2; 10}
Mình làm vd 2 bài nha:
a) n+6 chia hết cho n+2
n+2 chia hết cho n+2
nên (n+6)-(n+2) chia hết cho n+2
4 chia hết cho n-2
=> n-2 = 1;-1;2;-2;4;-4
=> n=3;1;4;0;6
d) n^2 +4 chia hết cho 4
n+1 chia hết cho n+1 nên (n+1)(n+1) chia hết cho n+1 hay n2+2n+1 chia hết cho n+1
=> (n^2+2n+1)-(n^2+4) chia hết cho n-1
=> 2n+1-4 chia hết cho n-1
=> 2n - 3 chia hết cho n-1
n-1 chia hết cho n-1 nên 2n-2 chia hết cho n-1
=> (2n-2)-(2n-3) chia hết cho n-1
=> 1 chia hết cho n-1
=> n-1 = 1;-1
=> n=0
Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
n2 + 3n - 13 chia hết cho n + 3
=> n(n + 3) - 13 chia hết cho 13
=> 13 chia hết cho n + 3 (Vì n(n + 3) chia hết cho n + 3)
=> n + 3 thuộc {1; -1; 13; -13}
=> n thuộc {-2; -4; 10; -16}
_____________________Giải_____________________
\(\hept{\begin{cases}a+2b⋮3\\3a+3b⋮3\end{cases}}\Rightarrow3a+3b-a-2b⋮3\Rightarrow2a+b⋮3\)
2. _____________________Giải________________________
\(\hept{\begin{cases}a-b⋮7\\7a+7b⋮7\end{cases}}\Rightarrow7a+a+7b-b⋮7\Rightarrow8a+6b⋮7\)
=> 2(4a+3b) chia hết cho 7 vì (2;7)=1
=> 4a+3b chia hết cho 7 (đpcm)
dap an la -16 nhe ban
Tìm n thuộc Z để n^3+3n-13 chia hết cho n+3
.................................. ( tính )
=> = 16
hơi dài nên mik ghi kết quả thôi !