K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2019

BẰNG N

15 tháng 5 2019

Giờ này mà bạn đi hỏi mấy bài này á!Lớp 7 chưa học hằng đẳng thức nhưng vẫn làm được mà!

Đặt \(\left(\sqrt{a};\sqrt{b}\right)\rightarrow\left(x;y\right)\).Cần chứng minh:\(x^2+y^2\ge2xy\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow x\left(x-y\right)-y\left(x-y\right)\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)

Dấu '=" xảy ra khi x = y tức là \(\sqrt{a}=\sqrt{b}\Leftrightarrow a=b\)

1 tháng 5 2019

\(a-b=c+d\)

\(\Rightarrow a-b-c-d=0\)

\(\Rightarrow2a\left(a-b-c-d\right)=0\)

\(\Rightarrow a^2+b^2+c^2+d^2+2a\left(a-b-c-d\right)=a^2+b^2+c^2+d^2\)

\(=\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)\)

\(=\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2\) là tổng 3 số chính phương.

* Tổ chức cuộc thi toán ( lớp 6 lên lớp 7 ) Vòng 1Ngày ra đề  : 29 / 12 / 2018Ngày nộp : 15 / 1 / 2019Ngày trao thưởng : 20/1/2019-------------------------------------------------------------------------*Giải thưởng :Nhất : 10 SPNhì ( 2 giải ) : 8 SPBa ( 3 giải ) : 6 SPKhuyến khích ( 5 giải ) : 4 SP--------------------------------------------------------------------------------------------------------------------------------------*Thể lệ thi: ...
Đọc tiếp

* Tổ chức cuộc thi toán ( lớp 6 lên lớp 7 ) Vòng 1

Ngày ra đề  : 29 / 12 / 2018

Ngày nộp : 15 / 1 / 2019

Ngày trao thưởng : 20/1/2019

-------------------------------------------------------------------------

*Giải thưởng :

Nhất : 10 SP

Nhì ( 2 giải ) : 8 SP

Ba ( 3 giải ) : 6 SP

Khuyến khích ( 5 giải ) : 4 SP------------------------------------

--------------------------------------------------------------------------------------------------

*Thể lệ thi:

    +Mỗi lần đăng lên một bài, nên kiểm tra kĩ trước khi đăng (vì mỗi bài chỉ được đăng lên một lần)

    +Không spam,không đăng bình luận linh tinh,chỉ trích hay "ném đá" bài giải người khác.

--------------------------------------------------------------------------------

Mong các bạn CTV và các bạn trên 2500 điểm hỏi đáp tài trợ

Nói nhiều rồi chúng ta vào cuộc thi thôi.

-------------------------------------------------------------------------------------------

Đề : ( cũng dễ thôi )

Câu 1 : Giải phương trình

\(\sqrt{x^2+4x+5}=1\)

Câu 2 : Biết độ dài ba cạnh của một tam giác tỉ lệ với 2; 5; 9. Tính độ dài mỗi cạnh của một tam giác đó biết rằng cạnh nhỏ nhất ngắn hơn cạnh lớn nhất 14m.

Câu 3 : 

Cho tam giác ABC, có góc A = 900. Tia phân giác BE của góc ABC (E ∈ AC). Trên BC lấy M sao cho BM = BA.

a) Chứng minh ΔBEA = ΔBEM.

b) Chứng minh EM ⊥ BC.

c) So sánh góc ABC và góc MEC

 

 

1
27 tháng 12 2018

cảm on Nguyen Chau Tuan Kietvề bài 

* Tổ chức cuộc thi toán ( lớp 6 lên lớp 7 ) Vòng 1

Ngày ra đề  : 29 / 12 / 2018

Ngày nộp : 15 / 1 / 2019

Ngày trao thưởng : 20/1/2019

-------------------------------------------------------------------------

*Giải thưởng :

Nhất : 10 SP

Nhì ( 2 giải ) : 8 SP

Ba ( 3 giải ) : 6 SP

Khuyến khích ( 5 giải ) : 4 SP------------------------------------

--------------------------------------------------------------------------------------------------

*Thể lệ thi:

    +Mỗi lần đăng lên một bài, nên kiểm tra kĩ trước khi đăng (vì mỗi bài chỉ được đăng lên một lần)

    +Không spam,không đăng bình luận linh tinh,chỉ trích hay "ném đá" bài giải người khác.

--------------------------------------------------------------------------------

Mong các bạn CTV và các bạn trên 2500 điểm hỏi đáp tài trợ

Nói nhiều rồi chúng ta vào cuộc thi thôi.

-------------------------------------------------------------------------------------------

Đề : ( cũng dễ thôi )

Câu 1 : Giải phương trình

√x2+4x+5=1

Câu 2 : Biết độ dài ba cạnh của một tam giác tỉ lệ với 2; 5; 9. Tính độ dài mỗi cạnh của một tam giác đó biết rằng cạnh nhỏ nhất ngắn hơn cạnh lớn nhất 14m.

Câu 3 : 

Cho tam giác ABC, có góc A = 900. Tia phân giác BE của góc ABC (E ∈ AC). Trên BC lấy M sao cho BM = BA.

a) Chứng minh ΔBEA = ΔBEM.

b) Chứng minh EM ⊥ BC.

c) So sánh góc ABC và góc MEC

* Tổ chức cuộc thi toán ( lớp 6 lên lớp 7 ) Vòng 1Ngày ra đề  : 29 / 12 / 2018Ngày nộp : 15 / 1 / 2019Ngày trao thưởng : 20/1/2019-------------------------------------------------------------------------*Giải thưởng :Nhất : 10 SPNhì ( 2 giải ) : 8 SPBa ( 3 giải ) : 6 SPKhuyến khích ( 5 giải ) : 4 SP--------------------------------------------------------------------------------------------------------------------------------------*Thể lệ thi: ...
Đọc tiếp

* Tổ chức cuộc thi toán ( lớp 6 lên lớp 7 ) Vòng 1

Ngày ra đề  : 29 / 12 / 2018

Ngày nộp : 15 / 1 / 2019

Ngày trao thưởng : 20/1/2019

-------------------------------------------------------------------------

*Giải thưởng :

Nhất : 10 SP

Nhì ( 2 giải ) : 8 SP

Ba ( 3 giải ) : 6 SP

Khuyến khích ( 5 giải ) : 4 SP------------------------------------

--------------------------------------------------------------------------------------------------

*Thể lệ thi:

    +Mỗi lần đăng lên một bài, nên kiểm tra kĩ trước khi đăng (vì mỗi bài chỉ được đăng lên một lần)

    +Không spam,không đăng bình luận linh tinh,chỉ trích hay "ném đá" bài giải người khác.

--------------------------------------------------------------------------------

Mong các bạn CTV và các bạn trên 2500 điểm hỏi đáp tài trợ

Nói nhiều rồi chúng ta vào cuộc thi thôi.

-------------------------------------------------------------------------------------------

Đề : ( cũng dễ thôi )

Câu 1 : Giải phương trình

\(\sqrt{x^2+4x+5}=1\)

Câu 2 : Biết độ dài ba cạnh của một tam giác tỉ lệ với 2; 5; 9. Tính độ dài mỗi cạnh của một tam giác đó biết rằng cạnh nhỏ nhất ngắn hơn cạnh lớn nhất 14m.

Câu 3 : 

Cho tam giác ABC, có góc A = 900. Tia phân giác BE của góc ABC (E ∈ AC). Trên BC lấy M sao cho BM = BA.

a) Chứng minh ΔBEA = ΔBEM.

b) Chứng minh EM ⊥ BC.

c) So sánh góc ABC và góc MEC

15
27 tháng 12 2018

Câu 1 :

\(\sqrt{x^2+4x+5}=1\)

\(\left(\sqrt{x^2+4x+5}\right)^2=1^2\)

\(x^2+4x+5=1\)

\(x^2+4x=-4\)

\(x\left(x+4\right)=-4\)

Xét bảng :

x1-12-24-4
x+4-44-22-11
x11-12-24-4
x2-80-6-2-5-3

Xét thấy chỉ có x = -2 và x + 4 = 2 thì x1 = x2 = -2 => chọn

Các trường hợp còn lại loại vì nghiệm của x1 và x2 phải bằng nhau

Vậy x = -2

xét tam giác BAE và tam giác BME xcos 

    BA=BM (gt)

    góc BAE =góc MEB (gt)

BE cạnh chung 

VẬY tam giác BAE=tam giác BME (c_g_c)

b)  ta có tam giác BAE=tam giác BME

=> góc BMA=góc BME=90 độ(đpcm)

31 tháng 12 2018

Câu 1 đề sai

Câu 2: Ta có:\(8^7-2^{18}\)

                 \(=\left(2^3\right)^7-2^{18}\)

                 \(=2^{3.7}-2^{18}\)

                 \(=2^{21}-2^{18}\)

                 \(=2^{17}\left(2^4-2\right)\)

                 \(=2^{17}.14⋮14\)

Nên \(8^7-2^{18}⋮14\)

Vậy \(8^7-2^{18}⋮14\)

31 tháng 12 2018

Cảm ơn anh Incursion_03 đã nhắc nhở nha.

Các bạn cho mình sửa đề chút ạ :

\(\frac{a-b+c}{a+2b-c}\)

https://h.vn/hoi-dap/question/38145.html

bạn xem ở đây nhé

a) Ta có: tam giác ABC cân tại A nên đường cao AH còn là đường trung tuyến 
Suy ra: H là trung điểm của BC 
BH = BC/2 = 3cm 
Áp dụng định lý Py ta go ta có: AH = căn (AB^2 - BH^2) = 4cm 

b)Ta có: G là trọng tâm của tam giác ABC nên G thuộc giao của ba đường trung tuyến của tam giác 
Suy ra: G thuộc đường trung tuyến kẻ từ A 
Mà ở câu a, AH còn là đường trung tuyến nên G thuộc AH 
Vậy: A,G,H thẳng hàng 

c)Tam giác ABC cân tại A, có AH là đường cao nên còn là đường phân giác 
Suy ra: góc BAG = góc CAG 
Xét tam giác ABG và tam giác ACG có: 
AB = AC (tam giác ABC cân tại A) 
góc BAG = góc CAG (cm trên) 
AG chung 
Vậy tam giác ABG = tam giác ACG (c-g-c) 
Suy ra: góc ABG = góc ACG