Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai số nguyên đối nhau thì thỏa mãn đề bài, ví dụ: 2\( \vdots \)(-2)và (-2)\( \vdots \)2
\(a,n+6⋮n\)
\(\Rightarrow6⋮n\)
\(\Rightarrow n\inƯ\left(6\right)\)
\(\Rightarrow n\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
\(b,n+9⋮n+1\)
\(\Rightarrow n+1+8⋮n+1\)
\(\Rightarrow8⋮n+1\)
\(\Rightarrow n+1\inƯ\left(8\right)\)
\(\Rightarrow n+1\in\left\{-1;1;-2;2;-4;4;-8;8\right\}\)
\(\Rightarrow n\in\left\{-2;0;-3;1;-5;3;-9;7\right\}\)
\(c,n-5⋮n+1\)
\(\Rightarrow n+1-6⋮n+1\)
\(\Rightarrow6⋮n+1\)
\(\Rightarrow n+1\inƯ\left(6\right)\)
\(\Rightarrow n+1\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
\(\Rightarrow n\in\left\{-2;0;-3;0;-4;2;-7;5\right\}\)
\(d,2n+7⋮n-2\)
\(\Rightarrow2n-4+11⋮n-2\)
\(\Rightarrow2\left(n-2\right)+11⋮n-2\)
\(\Rightarrow11⋮n-2\)
\(\Rightarrow n-2\inƯ\left(11\right)\)
\(\Rightarrow n-2\in\left\{-1;1;-11;11\right\}\)
\(\Rightarrow n\in\left\{1;3;-9;13\right\}\)
Có nhiều cặp 2 số nguyên a, b khác nhau mà \(a⋮b\) và\(b⋮a\) <=> a và b là hai số nguyên đối nhau.
Ví dụ : 2\(⋮\)(-2) ; (-2)\(⋮\)2
n+2 chia hết n-3 \(\left(n\ne3;n\in Z\right)\)
Mà n-3 chia hết n-3
=> [(n+2)-(n-3)] chia hết n-3
<=> [n+2-n+3] chia hết n-3
=> 5 chia hết n-3
=> n-3 thuộc {-1 ; -5 ; 5; 1 }
Ta có bảng
n-3 | -1 | -5 | 1 | 5 |
n | 2 | -2 | 4 | 8 |
Thử lại : đúng
Vậy \(n\in\left\{2;-2;4;8\right\}\)
2 chia hết cho 4 ; 4 chia hết cho 2
6 chia hết cho 3 ; 3 chia hết cho 6
Những số nguyên a, b khác nhau mà a chia hết cho b và b chia hết cho a là những số đối nhau.
Không tin bạn cứ thử.
có , vd: -1 chia hết cho 1 ; 1 chia hết cho -1
tóm lại , đó là 2 số nguyên đối nhau
có đó: ví dụ 1 và -1; 2 và -2; 3 và -3....
tick nha