K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2015

Theo hằng đẳng thức : a^ 3 – b^3 = ( a –b) ( a^2 + ab + b^2) 

B= ( x + 1) ^3 – ( x -1) ^3 

<=> B = ( x +1 – x +1) [( x+1)^2 + (x+1) (x-1) + (x-1)^2] 

<=>B = 2 .( x^2 +2x +1 + x^2 -1 + x^2 -2x +1) 

<=> B = 2 ( 3x^2 + 1) 

<=> B = 6x^2 +2 

=> có phụ thuộc vào biến

11 tháng 9 2015

ai trả lời được mình cho 6 tick lun

17 tháng 10 2020

( 2x - y )3 - 2( 4x3 + 1 ) + 6xy + y3

= 8x3 - 12x2y + 6xy2 - y3 - 8x3 - 2 + 6xy + y3

= 6xy2 + 6xy - 12x2y - 2

=> có phụ thuộc vào biến

6 tháng 10 2018

Ta có:

\(A=\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)

\(=\left[3x\left(2x+11\right)-5\left(2x+11\right)\right]-\left[2x\left(3x+7\right)+3\left(3x+7\right)\right]\)

\(=\left[\left(6x^2+33x\right)-\left(10x+55\right)\right]-\left[\left(6x^2+14x\right)+\left(9x+21\right)\right]\)

\(=\left[6x^2+23x-55\right]-\left[6x^2+23x+21\right]\)

\(=-55-21=-76\)

Vậy biểu thức A không phụ thuộc vào biến x, y.

7 tháng 9 2017
ở trong sách nào đó bạn
31 tháng 8 2020

\(=x^3-3x^2+3x-1-\left(x^3+x^2+x-x^2-x-1\right)-3x+3x^2\)  

\(=x^3-3x^2+3x-1-\left(x^3-1\right)-3x+3x^2\)   

\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)   

\(=0\)   

Vậy giá trị biểu thức không phụ thuộc vào biến x 

31 tháng 8 2020

( x - 1 )3 - ( x - 1 )( x2 + x + 1 ) - 3( 1 - x )x 

= x3 - 3x2 + 3x - 1 - ( x3 - 1 ) - 3x + 3x2

= x3 - 3x2 + 3x - 1 - x3 + 1 - 3x + 3x2

= 0

Vậy biểu thức không phụ thuộc vào biến ( đpcm )

22 tháng 7 2019

C = y( x^4-y^4)-x^4y+y^5

    =x^4y-y^5-x^4y+y^5

    =0

Vậy...........................................

22 tháng 7 2019

Bài giải ....

C = y . ( x2 - y2 ) ( x2 + y2) - y ( x4 - y4 )

C = y . \([(x^2)^2-\left(x^2\right)^2]\)- y . ( x4 - y4 )

C = y . ( x4 - y4 ) - y . ( x4 - y4 )

C = 0

Bài 1:

a)    \(x^3-5x^2+8x-4\)

\(=x^3-4x^2+4x-x^2+4x-4\)  \(=x\left(x^2-4x+4\right)-\left(x^2-4x+4\right)\)\(=\left(x-1\right)\left(x-2\right)^2\)

b) Ta có:  \(\frac{A}{M}=\frac{10x^2-7x-5}{2x-3}=5x+4+\frac{7}{2x-3}\)

   Với \(x\in Z\)thì  \(A⋮M\)khi \(\frac{7}{2x-3}\in Z\)\(\Rightarrow7⋮\left(2x-3\right)\)\(\Rightarrow2x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Rightarrow=\left\{1;5;\pm2\right\}\)thì khi đó \(A⋮M\)

17 tháng 8 2019

Các bài làm này có đúng ko ạ, ai đó duyệt giúp em, em cảm ơn.

Bài 1:

a)x3-5x2+8x-4=x3-4x2+4x-x2+4x-4

=x(x2-4x-4)-(x2-4x+4)

=(x-1) (x-2)2

b)Xét:

\(\frac{a}{b}-\frac{10x^2-7x-5}{2x-3}\)

=\(5x+4+\frac{7}{2x-3}\)

Với x thuộc Z thì A /\ B khi \(\frac{7}{2x-3}\) thuộc  Z => 7 /\ (2x-3)

Mà Ư(7)={-1;1;-7;7} => x=5;-2;2;1 thì A /\ B

c)Biến đổi \(\frac{x}{y^3-1}-\frac{x}{x^3-1}=\frac{x^4-x-y^4+y}{\left(y^3-1\right)\left(x^3-1\right)}\)

=\(\frac{\left(x^4-y^4\right)\left(x-y\right)}{xy\left(y^2+y+1\right)\left(x^2+x+1\right)}\)(do x+y=1=>y-1=-x và x-1=-y)

=\(\frac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)-\left(x-y\right)}{xy\left[x^2y^2+y^2x+y^2+xy^2+xy+y+x^2+x+1\right]}\)

=\(\frac{\left(x-y\right)\left(x^2+y^2-1\right)}{xy\left[x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+2\right]}\)

=\(\frac{\left(x-y\right)\left(x^2-x+y^2-y\right)}{xy\left[x^2y^2+\left(x+y\right)^2+2\right]}=\frac{\left(x-y\right)\left[x\left(x-1\right)+y\left(y-1\right)\right]}{xy\left(x^2y^2+3\right)}\)

=\(\frac{\left(x-y\right)\left[x\left(-y\right)+y\left(-x\right)\right]}{xy\left(x^2y^2+3\right)}=\frac{\left(x-y\right)\left(-2xy\right)}{xy\left(x^2y^2+3\right)}\)

=\(\frac{-2\left(x-y\right)}{x^2y^2+3}\)Suy ra điều phải chứng minh

Bài 2 )

a)(x2+x)2+4(x2+x)=12 đặt y=x2+x

   y2+4y-12=0 <=>y2+6y-2y-12=0

<=>(y+6)(y-2)=0 <=> y=-6;y=2

>x2+x=-6 vô nghiệm vì x2+x+6 > 0 với mọi x

>x2+x=2 <=> x2+x-2=0 <=> x2+2x-x-2=0

<=>x(x+2)-(x+2)=0 <=>(x+2)(x-1) <=>  x=-2;x-1

Vậy nghiệm của phương trình x=-2;x=1

b)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}+\frac{x+4}{2005}+\frac{x+5}{2004}\)\(+\frac{x+6}{2003}\)

=\(\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)+\left(\frac{x+4}{2005}+1\right)\)\(+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)

<=>\(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}\)\(+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)

<=>\(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}\)\(-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)

Nhờ OLM xét giùm em vs ạ !

5 tháng 9 2020

b) 5(3xn + 1 - yn - 1) + 3(xn + 1 + 5yn - 1) - 5(3xn + 1 + 2yn - 1) - (3n + 1 - 10)

= 15xn + 1 - 5yn - 1 + 3xn + 1 + 15yn - 1 - 15xn + 1 - 10yn - 1 - 3n + 1 - 10

= (15xn + 1 + 3xn + 1 - 15xn + 1 - 3n + 1) + (15yn - 1 - 5yn - 1 - 10yn - 1) - 10

= xn + 1(15 + 3 - 15 - 3) + yn - 1(15 - 5 - 10) - 10

= 0 - 0 - 10 = -10 (đpcm)

a) h(x) = (x + 1)(x2 - x + 1) - (x - 1)(x2 + x + 1)

= x3 - x2 + x + x2 - x + 1 - x3 - x2 - x + x2 + x + 1

= (x3 - x3) - (x2 - x2 + x2 - x2) + (x - x - x + x) + (1 + 1)

= 1 + 1 

= 2 (đpcm)

5 tháng 9 2020

a) h(x) = ( x + 1 )( x2 - x + 1 ) - ( x - 1 )( x2 + x + 1 )

           = ( x3 + 13 ) - ( x3 - 13 )

           = x3 + 1 - x3 + 1

            = 2

Vậy h(x) không phụ thuộc vào biến ( đpcm )

b) 5( 3xn+1 - yn-1 ) + 3( xn+1 + 5yn-1 ) - 5( 3xn+1 + 2yn-1 ) - ( 3xn+1 - 10 )

= 15xn+1 - 5yn-1 + 3xn+1 + 15yn-1 - 15xn+1 - 10yn-1 - 3xn+1 + 10

= ( 15xn+1 + 3xn+1 - 15xn+1 - 3xn+1 ) + ( -5yn-1 + 15yn-1 - 10yn-1 ) + 10

= 0 + 0 + 10 = 10

Vậy giá trị của biểu thức không phụ thuộc vào biến ( đpcm )

9 tháng 7 2015

thứ nhất nè =)) vì biết bthức đó đã không phụ thuộc vào biến ( do cái đề cho nói chứng minh) nếu mà k phụ thuộc thì bảo chứng minh làm gì =)). Nam k cần dùng bút vì Nam chỉ cần đọc kết quả. Với mọi x thì biểu thức trên luôn cùng bằng 1 số nào đó vì cái đề bảo cm nó không phụ thuộc. nhìn hạng tử thứ 2, 6x^2-17x+11 có nghiệm là 1 nếu ta thay 1 vào thì ta sẽ mất cái hạng tử thứ 2. thay 1 vào thì (1^2-5.1+1)(1-2)+2004=2002. vậy Nam chỉ cần thay 1 vào và đọc kết quả thôi. :))

13 tháng 6 2016

Dễ ợt, vì Nam là siêu sao toán mà.