K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2019

\(H=\left(x^2+1\right)+\left(2y^2+8\right)+\frac{1}{x}+\frac{24}{y}-9\)

\(\ge2\sqrt{x^2.1}+2\sqrt{2y^2.8}+\frac{1}{x}+\frac{24}{y}-9\)

\(=2x+8y+\frac{1}{x}+\frac{24}{y}-9\)

\(=\left(\frac{1}{x}+x\right)+\left(\frac{24}{y}+6y\right)+x+2y-9\)

\(\ge2\sqrt{\frac{1}{x}.x}+2\sqrt{\frac{24}{y}.6y}+x+2y-9\)

\(=2+24+x+2y-9\ge26+5-9=22\)

Dấu "=" xảy ra khi x = 1; y = 2

Vậy ....

9 tháng 2 2019

Mấy bài này chủ yếu là kiểm tra kĩ năng chọn điểm rơi và áp dụng BĐT AM-GM (Cô si) đúng chỗ thôi chứ có gì đâu?

Ta có x + y= 3 => x= 3 - y

=> (3 - y)^2 + y^2 \(\ge\)5

Giải bất phương trình trên, ta được: y \(\ge\)2

Chỉ biết giải đến đó, min P= 33 thì phải

                                        

28 tháng 2 2019

cảm ơn bn , tôi nghĩ ra rồi

bn ra dc \(y\ge2\)thì thay vào \(x^2+y^2\ge5\) ra dc \(x\ge1\)

khi đó min P = 1+16+6.4.1=41 khi và chỉ khi x=1 và y=2

tks bn 

24 tháng 8 2020

a) Ta có :  x - 2y = 0

=> x = 2y

Khi đó A = 2.(2y)2 - 2y2 - 3.2yy - 2.2y.y2 + (2y)2.y + 5

= 8y2 - 2y2 - 6y2 - 4y3 + 4y+ 5

= 5

Vậy giá trị của A khi x - 2y = 0 là 5

b)Thay 11 = x - y vào biểu thức B ta có

\(B=\frac{3x-\left(x-y\right)}{2x+y}-\frac{3y+x-y}{2y+x}=\frac{2x+y}{2x+y}-\frac{2y+x}{2y+x}=1-1=0\)

Vậy giá trị của B khi x - y = 11 là 0

14 tháng 12 2019

a) \(\frac{6}{x^2+4x}+\frac{3}{2x+8}=\frac{6.2}{2x\left(x+4\right)}+\frac{3x}{2x\left(x+4\right)}=\frac{12+3x}{2x\left(x+4\right)}=\frac{3\left(x+4\right)}{2x\left(x+4\right)}=\frac{3}{2x}\)

c) \(\frac{-5}{4+2y}+\frac{y-2}{2y+y^2}=\frac{-5.y}{2y\left(y+2\right)}+\frac{2\left(y-2\right)}{2y\left(y+2\right)}=\frac{-5y+2y-4}{2y\left(y+2\right)}=\frac{-3y-4}{2y\left(y+2\right)}\)

d) \(\frac{x-1}{x^2-2xy}+\frac{3}{2xy-x^2}=\frac{x-1}{x\left(x-2y\right)}-\frac{3}{x\left(x-2y\right)}=\frac{x-1-3}{x\left(x-2y\right)}=\frac{x-4}{x\left(x-2y\right)}\)

a) (5x - 2y) (x2 - xy + 1)

=5x^3 − 5x^2y + 5x − 2x^2y  +2xy^2 − 2y

=5x^3 − 7x^2y + 2xy^2 + 5x − 2y

b) (x - 1) (x + 1) (x + 2) 

=(x^2−1)(x+2)

=x^3+2x^2−x−2

phần c) mình ko biết nha 

a) (5x - 2y) (x2 - xy +1)

= 5x3-5x2y+5x-2x2y+2xy2+2y

= 5x3 - 7x2y+2xy2+5x+2y

b) (x - 1) (x + 1) (x + 2)

= (x\(^2\) - 1)(x + 2)

= x3 +2x2 - x - 2

c) \(\frac{1}{2}\)x2y2 (2x+y)(2x-y)

 \(\frac{1}{2}\)x2y(4x2 - y2)

= 2x4y2 -  \(\frac{1}{2}\)x2y4

7 tháng 1 2016

a)= \(\frac{-1}{xy}\)

b)\(\frac{3}{2x+6}\) - \(\frac{x-6}{2x^2+6x}\)\(\frac{3x}{2x\left(x+3\right)}\)\(\frac{x-6}{2x\left(x+3\right)}\)\(\frac{2x+6}{2x\left(x+3\right)}\)\(\frac{2\left(x+3\right)}{2x\left(x+3\right)}\)\(\frac{1}{x}\)

c)\(\frac{1}{xy-x^2}\)\(\frac{1}{y^2-xy}\)\(\frac{1}{x\left(x-y\right)}\)\(\frac{1}{-y\left(x-y\right)}\)\(\frac{y}{xy\left(x-y\right)}\)\(\frac{-x}{xy\left(x-y\right)}\)\(\frac{y+x}{xy\left(x-y\right)}\) 

nhớ tick nhé

2x2+2y2=5xy

<=>2x2-5xy+2y2=0

<=>(2x2-4xy)-(xy-2y2)=0

<=>2x(x-2y)-y(x-2y)=0

<=>(x-2y).(2x-y)=0

<=> (x-2y)=0 hoặc 2x-y=0

Nếu x-2y=0 =>x=2y

=>E=\(\frac{x+y}{x-y}\)=\(\frac{2y+y}{2y-y}\)=\(\frac{3y}{y}\)=3

Nếu 2x-y=0 =>2x=y

=>E=\(\frac{x+y}{x-y}\)=\(\frac{x+2x}{x-2x}\)=\(\frac{3x}{-1x}\)= -3

7 tháng 3 2020

2x^2 + 2y^2 = 5xy

<=> 2x^2 + 2y^2 - 5xy = 0

<=> 2x^2  - 4xy + 2y^2 - xy  = 0

<=> 2x(x - 2y) - y(x - 2y) = 0

<=> (2x - y)(x - 2y) = 0

<=> 2x = y hoặc x = 2y

thay vào là xong