Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tam giác ABC đồng dạng với tam giác DEF theo tỉ số đồng dạng 2/3
=> \(\frac{AB}{DE}=\frac{BC}{EF}=\frac{AC}{DF}=\frac{2}{3}\)=> \(\frac{AB}{DE}=\frac{BC}{EF}=\frac{AC}{DF}=\frac{AB+BC+AC}{DE+EF+DF}=\frac{2}{3}\)
=> \(\frac{C_{ABC}}{C_{DEF}}=\frac{2}{3}\) (Kí hiệu \(C\) là chu vi) => \(C_{DEF}=\frac{3}{2}.C_{ABC}=\frac{3}{2}.8=12\) cm
b)
D E F K A B C H
+) Dễ có tam giác DEK đồng dạng với tam giác ABH (do góc DEK = ABH; góc DKE = AHB)
=> \(\frac{AB}{DE}=\frac{AH}{DK}\) Mà \(\frac{AB}{DE}=\frac{2}{3}\Rightarrow\frac{AH}{DK}=\frac{2}{3}\)
+) Có : \(\frac{S_{ABC}}{S_{DEF}}=\frac{\frac{1}{2}.AH.BC}{\frac{1}{2}.DK.EF}=\frac{AH}{DK}.\frac{BC}{EF}=\frac{2}{3}.\frac{2}{3}=\frac{4}{9}\)
=> \(S_{ABC}=\frac{4}{9}.S_{DEF}=\frac{4}{9}.27=12\) cm2
*) Tổng quát: Nếu tam giác ABC đồng dạng với tam giác DEF theo tỉ số đồng dạng k
=> \(\frac{C_{ABC}}{C_{DEF}}=k;\frac{S_{ABC}}{S_{DEF}}=k^2\)
A B C D E A' B' C'
+ Dựng ΔADE ΔABC theo tỉ số 2/3
Trên AB lấy D, trên AC lấy E sao cho \(AD=\frac{2}{3}AB;AE=\frac{2}{3}AC\)
Suy ra : \(\frac{AD}{AB}=\frac{AE}{AC}=\frac{2}{3}\)
Khi đó theo định lý Ta-let đảo ta suy ra DE // BC
⇒ ΔADE ΔABC theo tỉ số 2/3.
+ Dựng ΔA’B’C’ = ΔADE
Vẽ đoạn A’B’ = AD.
Dựng góc \(\widehat{A'B'x}=\widehat{ADE}\)
Trên tia B’x lấy điểm C’ sao cho B’C’ = DE.
Nối C’A’ ta được ΔA’B’C’ = ΔADE (c.g.c)
Suy ra: ΔA’B’C’ đồng dạng với ΔADE theo tỉ số:
\(k_1=\frac{A'B'}{AD}=1\)
Mà tam giác ADE tam giác ABC theo tỉ số
\(k_2=\frac{AD}{AB}=\frac{2}{3}\)
=> Tam giác A'B'C' tam giác ABC theo tỉ số
\(k=k_1.k_2=\frac{A'B'}{AB}=\frac{2}{3}\)
tam giác ABC ~ tam giác DEF theo tỉ số đồng dạng là k = 2/5
thì tam giác DEF ~ tam giác ABC theo tỉ số đồng dạng là 1/k = 5/2
\(\Delta ABC\infty\Delta DEF\Rightarrow\frac{SABC}{SDEF}=4^2=16\)
\(\Rightarrow SDEF=\frac{SABC}{16}=\frac{100}{16}=6,25\)