K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2020

\(P=\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{4-6\sqrt{a}}{1-a}-\frac{-3}{\sqrt{a}+1}\)

ĐK : \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)

a) \(P=\frac{\sqrt{a}}{\sqrt{a}-1}+\frac{4-6\sqrt{a}}{a-1}+\frac{3}{\sqrt{a}+1}\)

\(=\frac{\sqrt{a}}{\sqrt{a}-1}+\frac{4-6\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{3}{\sqrt{a}+1}\)

\(=\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{4-6\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{3\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\frac{a+\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{4-6\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{3\sqrt{a}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\frac{a+\sqrt{a}+4-6\sqrt{a}+3\sqrt{a}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\frac{a-2\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\frac{\sqrt{a}-1}{\sqrt{a}+1}\)

Với \(a=4-2\sqrt{3}\)( tmđk \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\))

\(P=\frac{\sqrt{4-2\sqrt{3}}-1}{\sqrt{4-2\sqrt{3}}+1}\)

\(=\frac{\sqrt{3-2\sqrt{3}+1}-1}{\sqrt{3-2\sqrt{3}+1}+1}\)

\(=\frac{\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}+1^2}-1}{\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}+1^2}+1}\)

\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}-1}{\sqrt{\left(\sqrt{3}-1\right)^2}+1}\)

\(=\frac{\left|\sqrt{3}-1\right|-1}{\left|\sqrt{3}-1\right|+1}\)

\(=\frac{\sqrt{3}-1-1}{\sqrt{3}-1+1}=\frac{\sqrt{3}-2}{\sqrt{3}}\)

b) \(P=\frac{\sqrt{a}-1}{\sqrt{a}+1}=\frac{\sqrt{a}+1-2}{\sqrt{a}+1}=1-\frac{2}{\sqrt{a}+1}\)( ĐK \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\))

Để P đạt giá trị nguyên => \(\frac{2}{\sqrt{a}+1}\)nguyên

=> \(2⋮\sqrt{a}+1\)

=> \(\sqrt{a}+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

=> \(\sqrt{a}\in\left\{0;1\right\}\)< đã loại hai trường hợp âm >

=> \(a\in\left\{0\right\}\)< loại trường hợp a = 1 >

Vậy với a = 0 thì P có giá trị nguyên

23 tháng 10 2019

tôi ko bt

24 tháng 11 2017

a) Đặt \(u=\sqrt{x^2+1}\left(u>0\right)\Rightarrow u^2-1=x^2\)

Phương trình trở thành :

\(2u^2+6x-\left(2x+6\right)t=0\)

\(\Rightarrow\Delta_t=\left(2x+6\right)^2-48x=\left(2x-6\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{2x+6-2x+6}{4}=3\\t=\dfrac{2x+6+2x-6}{4}=x\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+1}=3\\\sqrt{x^2+1}=x\end{matrix}\right.\)

đến đây thì ez rồi

24 tháng 11 2017

c) Ta có :

\(2\sqrt{x^2-4x+5}=2\sqrt{\left(x-2\right)^2+1}\ge2\)

\(\sqrt{\dfrac{1}{4}x^2-x+1+4}=\sqrt{\left(\dfrac{1}{2}x-1\right)^2+4}\ge2\)

\(\Rightarrow2\sqrt{x^2-4x+5}+\sqrt{\dfrac{1}{4}x^2-x+5}\ge4\)

ta lại có: \(-4x^2+16x-12=-4\left(x^2-4x+4\right)+4\le4\)

\(\left\{{}\begin{matrix}VP\ge4\\VT\le4\end{matrix}\right.\)

Dấu bằng xảy ra khi x = 2

vậy x=2 là nghiệm của phương trình

DD
27 tháng 5 2021

ĐK: \(x\ne25,x\ge0\).

\(T=\frac{\sqrt{x}}{\sqrt{x}-5}-\frac{5}{\sqrt{x}+5}-\frac{10\sqrt{x}}{x-25}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+5\right)-5\left(\sqrt{x}-5\right)-10\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)

\(=\frac{x+5\sqrt{x}-5\sqrt{x}+25-10\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\)

\(=\frac{\left(\sqrt{x}-5\right)^2}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}=\frac{\sqrt{x}-5}{\sqrt{x}+5}=1-\frac{10}{\sqrt{x}+5}\)

\(T\)nguyên mà \(x\)nguyên nên \(\sqrt{x}+5\inƯ\left(10\right)\)mà \(\sqrt{x}+5\ge5\)nên \(\orbr{\begin{cases}\sqrt{x}+5=5\\\sqrt{x}+5=10\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=25\left(l\right)\end{cases}}\).

27 tháng 5 2021

giá trị nguyên là bn v ạ:?)

17 tháng 5 2018

a) 

\(A=\frac{\sqrt{a}+3}{\sqrt{a}-2}-\frac{\sqrt{a}-1}{\sqrt{a}+2}+\frac{4\sqrt{a}-4}{4-a}\)

\(=\frac{\left(\sqrt{a}+3\right)\left(\sqrt{a}+2\right)-\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}+\frac{4\sqrt{a}-4}{4-\sqrt{a}}\)

\(=\frac{a+2\sqrt{a}+3\sqrt{a}+6-a-2\sqrt{a}-\sqrt{a}+2}{a-4}+\frac{4\sqrt{a}-4}{4-a}\)

\(=\frac{a-a+\left(2+3-2-1\right)\sqrt{a}+6+2}{a-4}+\frac{-4\sqrt{a}+4}{a-4}\)

\(=\frac{2\sqrt{a}+8}{a-4}+\frac{-4\sqrt{a}+4}{a-4}\)

\(=\frac{2\sqrt{a}+8-4\sqrt{a}+4}{\left(a-4\right)^2}\)

\(=\frac{-2\sqrt{a}+12}{\left(a-4\right)^2}\)

b) thấy A = 9 vào biểu thức , ta có : 

\(9=\frac{-2\sqrt{a}+12}{\left(a-4\right)^2}\)

\(< =>\frac{9\left(a-4\right)^2}{\left(a-4\right)^2}=\frac{-2\sqrt{a}+12}{\left(a-4\right)^2}\)

\(< =>9\left(a-4\right)^2=-2\sqrt{a}+12\)

\(< =>9.\left(a^2-2a.4+4^2\right)=-2\sqrt{a}+12\)

\(< =>9a^2-72a+144=-2\sqrt{a}+12\)

\(< =>9a^2-72a+2\sqrt{a}=12-144\)

\(< =>\sqrt{a}\left(9\sqrt{a}^3-72\sqrt{a}+2\right)=-132\)

\(\)

TỚI ĐÂY AI BIẾT THÌ GIẢI TIẾP NHA  , MÌNH HẾT BIẾT CÁCH LÀM RỒI 

25 tháng 7 2019

#)Giải :

1.\(\sqrt{m+2\sqrt{m-1}}-\sqrt{m-2\sqrt{m-1}}\)

\(=\sqrt{m-1+2\sqrt{m-1}+1}+\sqrt{m-1-2\sqrt{m-1}+1}\)

\(=\sqrt{\left(\sqrt{m-1}+1\right)^2}+\sqrt{\left(\sqrt{m-1}-1\right)^2}\)

\(=\sqrt{m-1}+1+\sqrt{m-1}-1\)

\(=2\sqrt{m-1}\)

24 tháng 10 2019

\(P=\frac{2005x+2006\sqrt{1-x^2}+2007}{\sqrt{1-x^2}}\)

\(=\frac{2006\left(1+x\right)+\left(1-x\right)}{\sqrt{1-x^2}}+2006\)

\(\ge\frac{2\sqrt{2006\left(1+x\right)\left(1-x\right)}}{\sqrt{1-x^2}}+2006=2\sqrt{2006}+2006\)

Dấu = xảy ra khi:

\(2006\left(1+x\right)=1-x\)

\(\Leftrightarrow x=-\frac{2005}{2007}\)

13 tháng 8 2020

c) Đk: x \(\ge\)0; x \(\ne\)4; x \(\ne\)9

A = \(-\frac{1}{\sqrt{x}-3}\) => -2A = \(\frac{2}{\sqrt{x}-3}\)

Để -2A thuộc Z <=> \(2⋮\sqrt{x}-3\)

<=> \(\sqrt{x}-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Lập bảng: 

\(\sqrt{x}-3\)    1    -1   2   -2
    x     8   4 (ktm) 25 1

Vậy ....

2 tháng 12 2019

1) Nếu ý bạn là ||3x-3|+2x+(-1)2016 |=3x+20170 thì bạn có thể tham khảo:https://h.vn/hoi-dap/question/514972.html

Nhưng nếu ý bạn là pt thế này thì... áp dụng tương tự nhé! Khổ hơn thôi :V

2) Đây là nơi bạn cần tìm: https://h.vn/hoi-dap/question/562808.html

Học tốt nhé ^3^

2 tháng 12 2019

Bài 1 :

\(\left||3x-3|+2x+\left(-1\right)\left(2016\right)=3x+20170\right|\)

\(\Leftrightarrow\orbr{\begin{cases}\left|3x-3\right|+2x-2016=3x+20170\\\left|3x-3\right|+2x-2016=-3x-20170\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left|3x-3\right|=3x-2x+2016+20170\\\left|3x-3\right|=-3x-20170-2x+2016\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left|3x-3\right|=x+22186\\\left|3x-3\right|=-5x-18154\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x-3=x+22186\\3x-3=-x-22186\end{cases}}\)hoặc \(\orbr{\begin{cases}3x-3=-5x-18154\\3x-3=5x+18154\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x-x=22186+3\\3x+x=3-22186\end{cases}}\)hoặc \(\orbr{\begin{cases}3x+5x=3-18154\\3x-5x=3+18154\end{cases}}\)

Còn lại tự làm nốt nhá !