K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2019

bn làm như bạn dưới hướng dẫn

27 tháng 10 2019

Của mình là 32020 mà của ngta mũ là 2002 mà !! ;(

14 tháng 1 2016

777777

7 tháng 6 2018

Câu 1 :

Ta thấy: \(1972:a\)dư \(28;2014:a\)dư \(28\)( * )

\(\Rightarrow2014-1972⋮a\)

\(\Rightarrow42⋮a\Leftrightarrow a\inƯ\left(42\right)=\left\{1;2;3;6;7;14;21;42\right\}\)

Từ ( * ) \(\Rightarrow a>28\Rightarrow a=42\)

Vậy \(a=42.\)

Câu 2 :

a. \(3^2S=3^2.\left(3^0+3^2+3^4+3^6+...+3^{2014}\right)\)

\(\Leftrightarrow9S=3^2+3^4+3^6+3^8+...+3^{2016}\)

\(\Rightarrow9S-S=\left(3^2+3^4+3^6+3^8+...+3^{2016}\right)-\left(3^0+3^2+3^4+3^6+...+3^{2014}\right)\)

\(\Leftrightarrow8S=3^{2016}-3^0=3^{2016}-1\)

\(\Rightarrow S=3^{2016}-1:8=\frac{3^{2016}-1}{8}\)

Vậy \(S=\frac{3^{2016}-1}{8}.\)

b. \(S=3^0+3^2+3^4+3^6+...+3^{2014}\)

\(\Rightarrow3S=3.\left(3^0+3^2+3^4+3^6+...+3^{2014}\right)\)

\(\Leftrightarrow3S=3^1+3^3+3^5+3^7+...+3^{2015}\)

Nhận xét: Dãy trên có 1008 lũy thừa nên ta chia thành các nhóm, mỗi nhóm có 3 lũy thừa thì vừa tròn 336 nhóm như sau:

\(\Rightarrow3S=\left(3^1+3^3+3^5\right)+\left(3^7+3^9+3^{11}+\right)+...+\left(3^{2011}+3^{2013}+3^{2015}\right)\)

\(\Rightarrow3S=273+\left[3^6.\left(3^1+3^3+3^5\right)\right]+...+\left[3^{2010}.\left(3^1+3^3+3^5\right)\right]\)

\(\Rightarrow3S=273+\left(3^6.273\right)+...+\left(3^{2010}.273\right)\)

\(\Rightarrow3S=273.\left(1+3^6+...+3^{2010}\right)\)

\(\Rightarrow3S=7.39.\left(1+3^6+...+3^{2010}\right)⋮7\)

Mà \(\left(3,7\right)=1\Rightarrow S⋮7\left(đpcm\right).\)

7 tháng 6 2018

Câu 1:

ta có: 1972 chia a dư 28 => 1972 - 28 chia hết cho a => 1944 chia hết cho a

2014 chia a dư 28 => 2014 - 28 chia hết cho a => 1986 chia hết cho a

=> a thuộc ƯC ( 1944;1986) = ( 2;-2;3;-3;6;-6;1;-1)

mà a là số tự nhiên và 1972;2014chia hết cho 1;-1;2;-2 ( Loại)

=> a thuộc (3;6)

mà a= 3 => 1972chia 3 dư 1( Loại)

a = 6 => 1972;  2014 chia 6 đều dư 28 (TM)

KL: a = 6

Câu2:

a) ta có: S = 3^0 + 3^2 +3^4+ 3^6 +...+ 3^2014

=> 3^2.S = 3^2 + 3^4+ 3^8 +...+3^2016

=> 9 .S - S = 3^2016 - 3^0

8.S = 3^2016-1

S = 3^2016-1/8

b) S = 3^0 + 3^2 + 3^4 +3^6 +...+ 3^2014

S = ( 3^0 + 3^2 + 3^4) + ( 3^6 + 3^8+ 3^10 ) + ...+( 3^2010+3^2012+3^2014)

S = 91 + 3^6.( 1+3^2 + 3^4) + ...+ 3^2010. (1+3^2+3^4)

S = 91. ( 1+ 3^6 + ...+ 3^2010)

S= 7.13. ( 1+3^6+...+3^2010) chia hết cho 7

=> S chia hết cho 7

17 tháng 9 2018

a) Ta có \(S=3^0+3^3+3^4+...+3^{2016}\)

\(\Rightarrow3S=3^1+3^4+3^5+...+3^{2017}\)

\(\Rightarrow3S-S=3^{2017}+3^1-3^3-3^0=3^{2017}-25\)

\(2S=3^{2017}-25\)

\(S=\frac{3^{2017}-25}{2}\)

21 tháng 7 2018

ta có: S = 3 + 3^2 + 3^3 + ...+3^1997 + 3^1998

S = (3 + 3^2 + 3^3) + (3^4+3^5+3^6) + ...+  ( 3^1996 + 3^1997 + 3^1998)

S = 3.(1+3+3^2) + 3^4.(1+3+3^2) + ...+ 3^1996.(1+3+3^2)

S = 3.13 + 3^4.13 + ...+ 3^1996.13

S = 13.(3 + 3^4 + 3^1996) chia hết cho 13 (1)

ta có: S = 3 + 3^2 + 3^3+...+3^1997+3^1998

S = (3+3^2) + (3^3+3^4) +...+(3^1997+3^1998)

S = 3.(1+3) + 3^3.(1+3)+...+3^1997.(1+3)

S = 3.4 +3^3.4 +...+3^1997.4

S = 4.(3+3^3 + ...+ 3^1997) chia hết cho 4

=> S chia hết cho 2 (2)

Từ (1);(2) => S chia hết cho 13.2 = 26

=> S chia hết cho 26

21 tháng 7 2018

Ta có : S = 3 + 32 + 33 + ... + 31997 + 31998 .

=>        S = ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 31997 + 31998 ) .

=>        S = 12 . ( 1 + 32 + 34 + ... + 31996 ) ⋮ 2 .

và S = 3 + 32 + 33 + ... + 31997 + 31998 .

=> S = (  3 + 32 + 33 ) + ( 34 + 35 + 36 ) + ... + ( 31996 + 31997 + 31998 ) .

=> S = 39 . ( 1 + ... + 31995 ) ⋮ 13 .

Vì 16 = 13 . 2 và ( 2 , 13 ) = 1 nên S ⋮ 26 .

Vậy S  26

27 tháng 7 2018

1/

a. \(x^3-2=25\)

   \(x^3=25+2\)

   \(x^3=27\)

    \(\Rightarrow x=3\)

b.\(\left(x-3\right)^2=25\)

    \(\left(x-3\right)^2=5^2\)

\(\Rightarrow x-3=5\)

\(\Rightarrow x=8\)

27 tháng 7 2018

1,a, x^3-2=25     b, (x-3)^2=25        c, x^3-x^2=55                 d,[(8.x-12):4].3^7=3^10

        x^3=27          (x-3)^2=5^2         không có giá trị x            (8.x-12):4=3^3

         x^3=3^3         x-3=5                                                    8.x-12=108   

         x=3               x=8                                                      8.x=120

                                                                                         x=15

2, a, \(7^6:7^4+3^4.3^2-3^7:3\)          b, 1736-(21-16).32+6.7^2            c,56.17+17.44-4^3.5+6.(3^2-2)

     =\(7^2+3^6-3^6\)                       =1736-5.32+6.49                         =17.(56+44)-320+42

    =\(49\)                                           =1736-160+294                           =17.10-278 

                                                          =1736+134                                =170-278

                                                          =1870                                       =-108

d, 3.10^2-[1200-(4^2-2.3)^3]

=300-[1200-(16-6)^3]

=300-(1200-10^3)

=300-(1200-1000)

=300-200

=100

12 tháng 12 2018

\(A=1+6+6^2+...+6^{100}\)

\(6A=6+6^2+6^3+...+6^{101}\)

\(6A-A=\left(6+6^2+...+6^{101}\right)-\left(1+6+...+6^{100}\right)\)

\(5A=6^{101}-1\)

\(A=\frac{6^{101}-1}{5}\)

Hoàn toàn tương tự với các câu b) c)

12 tháng 12 2018

\(A=1+6+6^2+6^3+...+6^{100}\)

\(6A=6+6^2+6^3+6^4+...+6^{101}\)

\(6A-A=\left(6+6^2+6^3+6^4+...+6^{101}\right)-\left(1+6+6^2+...+6^{100}\right)\)

\(5A=6^{101}-1\)

\(A=\frac{6^{101}-1}{5}\)

9 tháng 1 2016

số sh cua tong A bang so hang cua day so cach deu 1 don vi tu 1 den 60

so sh cua tong A la:(60-1):1+1=60 (sh)

Cu 3 sh lien tiep cua tong A nhom thanh 1 nhom thi ta duoc so nhom la : 60: 3=20(nhom)

khi do : A = (2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+....+(2^58+2^59+2^60)

            A=(2+2.2+2.2^2)+(2^4+2^4.2+2^4.2^2)+(2^7+2^7.2+2^7.2^2)+.....+(2^58

2^58.2+2^58.2^2)

           A=2(1+2+2^2)+2^4(1+2+2^2)+2^7(1+2+2^2)+...+2^58(1+2+2^2)

           A=2.7+2^4.7+2^7.7+...+2^58.7

          A=7(2+2^4+2^7+...+2^58)

Vi 7 chia het cho 7

2+2^4+2^7+...+2^58 thuoc N

Suy ra 7(2+2^4+2^7+...+2^58) chia het cho 7

hay A chia het cho 7

Vay A chia het cho 7

9 tháng 1 2016

Câu 1:

abc >/ 100 ; bca >/ 100 ; cab>/100

< = > abc + bca + cab >/300 

< = > abc + bca + cab >/ 111