K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2018

-(a+b)^3=-(1)^3=-1 cả hai đều đúng

22 tháng 5 2020

giúp mình câu c, thanks

27 tháng 6 2018

Bạn tự vẽ hình nha.

a) Xét hai tam giác BDC và EDB có:

\(\widehat{BDC}\left(\widehat{EDB}\right)\): góc chung

\(\widehat{BCD}=\widehat{EBD}\)= 900

Vậy \(\Delta\)BDC ~ \(\Delta\)EDB

\(\Rightarrow\dfrac{DB}{DE}=\dfrac{DC}{DB}\Rightarrow DB^2=DC.DE\)

b) Vì tam giác ABC vuông tại A

⇒ BD2 = AB2 + AD2

= 32 + 42

= 52

⇒BD = 5cm.

Ta có:

BC2 = CD. CE

\(\Rightarrow CE=\dfrac{BC^2}{CD}=\dfrac{9}{4}=2,25\)(cm)

c) Ta có BD // CF ( ⊥ BE)

\(\Rightarrow\dfrac{IC}{OD}=\dfrac{IE}{OE}\)\(\dfrac{IF}{OB}=\dfrac{IE}{OE}\)

\(\Rightarrow\dfrac{IC}{OD}=\dfrac{IF}{OB}\Rightarrow IC=IF\)( vì O là giao điểm hai đường chéo của HCN nên OB = OD)

Vậy I là trung điểm của đoạn CF. (đpcm)

d) Vì BD // CF nên BDCF là hình thang.

O và I lần lượt là trung điểm 2 cạnh đáy của BDCF.

E là giao điểm của hai cạnh bên BF và CD, OE đi qua hai trung điểm của hai cạnh đáy nên OE phải đi qua giao điểm của hai đường chéo của hình thang BDCF.

Mà OE cắt BC tại K nên đường chéo DF phải đi qua K.

Vậy ba điểm D, K, F thẳng hàng. (đpcm)

10 tháng 5 2023

 

 bạn ơi sao AD lại bằng 4 vậy bạn

Mong mn giúp mk làm phần in đậm , mk cần gấp ạ. Xin cảm ơn!!!Bài 1 Cho tam giác ABC, trung tuyến AD, biết AB = 4cm, AC = 8cm. Qua B dựng đường thắng cắt AC tại F sao cho góc ABF bằng góc ACB. a) Chứng tỏ tam giác ABF và tam giác ACB đồng dạng. Tính độ dài đoạn CFb) Chứng tỏ diện tích tam giác ABC bằng hai lần diện tích tam giác ADCc) Gọi 0 là giao điểm của BF và AD, CO cắt AB tại E. Từ A và C lần...
Đọc tiếp

Mong mn giúp mk làm phần in đậm , mk cần gấp ạ. Xin cảm ơn!!!

Bài 1 Cho tam giác ABC, trung tuyến AD, biết AB = 4cm, AC = 8cm. Qua B dựng đường thắng cắt AC tại F sao cho góc ABF bằng góc ACB. 

a) Chứng tỏ tam giác ABF và tam giác ACB đồng dạng. Tính độ dài đoạn CF

b) Chứng tỏ diện tích tam giác ABC bằng hai lần diện tích tam giác ADC

c) Gọi 0 là giao điểm của BF và AD, CO cắt AB tại E. Từ A và C lần lượt dựng các đường | thẳng song song với BF cắt CO tại J và cắt AD tại I.

 + Chứng tỏ FC/FA  = CI/JA

 + Chứng tỏ DB/DC  = FC/FA = EA/EB=1

 Bài 2: Cho hình chữ nhật ABCD, kẻ AH vuông góc với đường chéo BD

 a) Chứng minh tam giác AHD và tam giác DCB đồng dạng và BC.BC = DH.DB

 b) Gọi S là trung điểm của BH, R là trung điểm của AH. 

Chứng minh SH.BD = SR.DC 

c) Gọi T là trung điểm của DC. Chứng minh tứ giác DRST là hình bình hành

d) Tính góc AST

 

 

2
8 tháng 4 2020

câu 2d

 Ta có SR // AB mà AB ⊥ AD (gt) ⇒ SR ⊥ AD, lại có AH ⊥ SD (gt)

⇒ R là trực tâm của ΔSAD ⇒ DR là đường cao thứ ba nên DR ⊥ SA

Mà DR // ST (DRST là hình bình hành) ⇒ ST ⊥ SA

Vậy ∠AST = 90o

...

Chúc bạn học tốt 

8 tháng 4 2020

câu 1d

+ ΔACI có BF//CI→ FC/FA=OI/AO

IΔCOI có AJ//CI (//BF)→  CI/AJ=OI/AO

→FC/FA=CI/AJ