K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2015

A=(3+32) + (33 + 34)+...+(311 + 312)

A = 12 + 32(3+32)+....+310(3+312)

A = 12 + 32.12 +...+310 . 12

A = 4.3(32 + 34 +...+310)

=> A chia hết cho 4

19 tháng 2 2019

\(A=2+2^2+2^3+...+2^{2019}\)

\(2A=2^2+2^3+2^4+...+2^{2020}\)

\(A=2^{2020}-2\)

10 tháng 8 2020

Bạn vào câu hỏi tương tự là có nha !

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

10 tháng 8 2020

Ko cs đầy đủ bn ơi!

8 tháng 8 2015

A = 3+32+33+...+312

A = (3+32)+(33+34)+...+(311+312)

A = 1(3+32)+32(3+32)+...+311.(3+32)

A = 1.12 + 32.12 +....+311.12

A = 12(1+32+...+311) chia hết cho 12

Mà 12 chia hết cho 4

=> A chia hết cho 4

A = 3+32+33+...+312

A = (3+32+33)+(34+35+36)+...+(310+311+312)

A = 3(1+3+32)+34(1+3+32)+....+310(1+3+32)

A = 3.13 + 34.13 +.....+310.13

A = 13(3+34+....+310) chia hết cho 13

KL: A chia hết cho 4; 12; 13 (đpcm)

23 tháng 10 2015

AI MÀ GIẢI!

CHỈ CÁI ĐỀ THÔI MÀ CŨNG ĐỦ RỐI RỒI!!!!!!!!!!!!!!!!!!

23 tháng 10 2015

bà ra đề khó quá

5 tháng 1 2016

bài này có trong violympic ne tick mình chỉ cho

5 tháng 1 2016

 

A=3 + 32 + 33 + .....+3100

=(3+32)+(33+34)+....+(399+3100)

=3.(1+3)+33.(1+3)+...+399.(1+3)

=3.4+33.4+...+399.4

=4.(3+33+...+399) chia hết cho 4

Vậy A chia hết cho 9

27 tháng 12 2020

lên hoidap247 hỏi nhé

27 tháng 12 2020

A = 2 + 2+ 23 +24 + ... + 220

*Chia hết cho 15*

A = 2 + 2+ 23 +24 + ... + 220

A = ( 2 + 22 + 2+ 24)  + ( 25 + 26 + 27 + 28 ) + ... + ( 217 + 218 + 219 + 220 ) 

A = 30 +  ( 25 + 26 + 27 + 28 ) + ... + ( 217 + 218 + 219 + 220 ) 

A = 30 + ( 25 . 1 + 25 . 2 + 25 . 22 + 25 . 23 ) + ... + ( 217 . 1 + 217 . 2 + 217 . 22 + 217 . 23 )

A = 30 + 24  ( 2 + 22 + 2+ 24)  + ... + 216  ( 2 + 22 + 2+ 24)  

A = 30 + 24 . 30 + ... + 216 . 30

A = 30 ( 24 + ... + 216 )

Vậy A \(⋮\)15

Vì số nào chia hết cho 15 sẽ chia hết cho 3 => A \(⋮\)3

Vậy A \(⋮\)3

Học toots!!!

8 tháng 4 2020

a) M=2+22+23+24+....+22017+22018

=> 2M=2(2+22+23+24+....+22017+22018)

=> 2M=22+23+24+25+....+22018+22019

=> 2M-M=22019-2

b) M=2+22+23+24+....+22017+21018

=> M=(2+22)+(23+24)+....+(22017+22018)

=> M=2(1+2)+23(1+2)+....+22017(1+2)

=> M=2.3+23.3+....+22017.3

=> M=3(2+23+.....+22017)

=> M chia hết cho 3

8 tháng 4 2020

a, M= 2 + 2^2 + 2^3 +....+ 2^2018

2M= 2^2 + 2^3 + 2^4 +...+ 2^2019

2M-M= ( 2^2 + 2^3 + 2^4 +....+ 2^2019) - ( 2+ 2^2 + 2^3 +...+ 2^2018)

M= 2^2019 - 2

b, Tổng trên có 2018 số, nhóm mỗi nhóm 2 số, ta có:

M= (2 + 2^2) + (2^3 + 2^4) +...+ (2^2017 + 2^2018)

M= 2(1+2) + 2^3(1+2) +...+ 2^2017(1+2)

M= 2. 3 + 2^3.3 +...+ 2^2017.3

M= 3( 2 + 2^3 +...+ 2^2017) chia hết cho 3

Vậy M chia hết cho 3

\(C=3+3^2+3^3+3^4+.....+3^{100}\)

\(\Leftrightarrow C=\left(3+3^2+3^3+3^4\right)+........+\left(3^{97}+3^{98}+^{99}+3^{100}\right)\)

\(\Leftrightarrow C=3\left(1+3+3^2+3^3\right)+......+3^{97}+\left(1+3+3^2+3^3\right)\)

\(\Leftrightarrow C=3.40+.....+3^{97}.40\)

\(\Leftrightarrow C=40.\left(3+...+3^{97}\right)\)

\(\Rightarrow C⋮40\left(dpcm\right)\)

_Vi hạ_

11 tháng 7 2019

\(C=3+3^2+3^3+3^4+3^5+3^6+3^7+3^8...++3^{97}+3^{98}+3^{99}+3^{100}\)

\(C=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(C=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{96}\left(1+3+3^2+3^3\right)\)

\(C=\left(1+3+3^2+3^3\right)\left(3+3^5+...+3^{96}\right)\)

\(C=40.\left(3+3^5+...+3^{100}\right)⋮40\)

Vậy \(C⋮40\)