Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
=> \(\frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)
=> \(\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}=\frac{y+z+x+z+x+y}{x+y+z}=2\)
+) \(\frac{y+z}{x}=2\)
=> y+z=2x
+) \(\frac{x+z}{y}=2\)
=>x+z=2y
+)\(\frac{x+y}{z}=2\)
=> x+y=2z
Mà B= ( 1+x/y)(1+y/z) (1+z/x)
B= \(\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\)
B= \(\frac{2z.2x.2y}{xyz}\)
B= 8
~ Chúc bạn học tốt ~
Tích và kết bạn với mình nha!
Ta có: \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)
Lại có:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Leftrightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
\(\Leftrightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
(+) Xét x + y + z = 0\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}}\)
Thay vào ta có: \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{-xyz}{xyz}=-1\)
(+) Xét x + y + z \(\ne\) 0
Tương tự như trên ta có: \(\hept{\begin{cases}x+y=2z\\y+z=2x\\z+x=2y\end{cases}}\)
Thay vào ta có: \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)
Vậy \(\hept{\begin{cases}B=-1\Leftrightarrow x+y+z=0\\B=8\Leftrightarrow x+y=y+z=z+x\Leftrightarrow x=y=z\end{cases}}\)
Ta có: \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\)\(\Rightarrow\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}=\frac{xyz}{y\left(z+x\right)}\)\(\Rightarrow z\left(x+y\right)=x\left(y+z\right)=y\left(z+x\right)\)\(\Rightarrow zx+zy=xy+xz=yz+xy\)
Ta có: zx + zy = xy + xz => zy = xy => z = x (1)
Ta có: x - z = x - x = 0
Cộng vế 2 đẳng thức đầu lại ta được
(y+z-x+z+x-y+z+y-z)/(x+y+z)=2 nên (x+z-y)/y=2 hay x+z=3y, tương tự y+z=3x, x+y=3z nên GT=27
nhấn vào đúng 0 sẽ ra kết quả mình làm bài này rồi
Do \(x+y+z=0;-1\le x,y,z\le1\)
Suy ra : Trong 3 số x,y,z tồn tại hai số cùng dấu
Giả sử : \(x\ge0;y\ge0;z\le0\)
Từ : \(x+y+z=0\)\(\Rightarrow z=-x-y\)
\(x^2+y^4+z^6\le\left|x\right|+\left|y\right|+\left|z\right|=x+y-z=-2z\)
\(\Rightarrow x^2+y^4+z^6\le-2z\le2\)
Vậy : \(x^2+y^4+z^6\le2\)