K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2018

dễ thôi

........

30 tháng 12 2018

tự vẽ hình nha

a, xét TG ADM và ABM có

 AM cạnh chung

DM = BM (gt)

DA = BA (gt)

=>TG ADM = TG ABM(c-c-c)

b, ta có DMA + BMA = 180 (KB)

DMA = BMA (2 góc tương ứng) =>DMA = BMA = 90

=> AK VGóc với DB

3 tháng 5 2019

a, áp dụng định lí py-ta-go vào tam giác vuông ta có:

             \(BC^2=AB^2+AC^2\)

=>  \(AC^2=BC^2-AB^2\)

=> \(AC^2\)= 169 - 25 =144 cm

=> AC=12 cm

vậy AC=12 cm

b, xét 2 t.giác vuông ABE và DBE có:

           AB=DB(gt)

           BE cạnh chung

=> t.giác ABE=t.giác DBE(cạnh huyền-cạnh góc vuông)

c, vì t.giác ABE=t.giác DBE(câu b) => AE=DE

xét 2 t.giác vuông AEF và DEC có:

         AE=DE

        \(\widehat{AEF}\)=\(\widehat{DEC}\)(vì đối đỉnh)

=> t.giác AEF=t.giác DEC(cạnh góc vuông-góc nhọn kề)

=> È=EC(2 cạnh tương ứng)

d, gọi O là giao điểm của EB và AD

xét t.giác ABO và t.giác DBO có:

          OB cạnh chung

         \(\widehat{ABO}\)=\(\widehat{DBO}\)(t.giác ABE=t.giác DBE)

         AB=BD(gt)

=> t.giác ABO=t.giác DBO(c.g.c)

=> OA=OD=> O là trung điểm của AD(1)

\(\widehat{AOB}\)=\(\widehat{DOB}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AOB}\)=\(\widehat{DOB}\)=90 độ => BO\(\perp\)AD(2)

từ (1) và (2) => BE là trung trực của AD

           

A B C D E 5cm 13cm F O

Mình làm thế này đúng không ạ

a) Xét Δ AHB vàΔ AHC có:

AH chung

AB =AC (vì Δ ABC cân tại A theo gt)

AH ⊥ BC (vì AH là đường cao theo gt)

⇒ Δ vuông AHB= Δ vuông AHC ( cạnh huyền- cạnh góc vuông)

Sửa đề ( đề sai : HD // AC )
b) Ta có : Δ AHB = Δ AHC (câu a)

⇒ ∠BAH = ∠CAH ( 2 góc tương ứng) (1)

Ta lại có: HD // AC (gt )

⇒ ∠DHA = ∠HAC (so le trong) (2)
Từ (1), (2)⇒ ∠BAH =∠ DAH ⇔ AD = DH ( theo tính chất Δ cân) (*)

Có HD // AC ⇒ ∠ACB = ∠DHB ( đồng vị ) (3)
△ABC cân tại A ⇒ ∠ABC = ∠ACB ( tính chất tam giác cân ) (4)
Từ (3) và (4) ⇒ ∠ABC = ∠DHB ⇒ ΔBDH cân tại D
⇒BD = HD (**)

Từ (*) (**) ⇒AD=DH=BD

c) Ta có: Δ ABH = Δ ACH (câu a) ⇔ BH =HC (hai cạnh tương ứng)

⇒ AH là trung tuyến Δ ABC tại A ( 3)

Ta có : DH //AC ⇒ ∠DHB =∠ACB ( vì đồng vị )

mà ΔABC cân tại A(gt) ⇒ ∠ABC= ∠ACB

⇒ ∠DHB =∠DBH ⇒ DB =DH (theo tính chất Δ cân)

mà ta có AD=DH (câu b) ⇒ DA=DB

⇒ CD là trung tuyến Δ ABC tại C (4)

Từ (3), (4) , AC cắt CD tại G ⇒ G là trọng tâm Δ ABC

mà CE =EA ⇒ BE là trung tuyến Δ ABC tại B

⇒ BE qua G ⇒ B,G,E thẳng hàng

a) Xét Δ AHB vàΔ AHC có:

AH chung

AB =AC (vì Δ ABC cân tại A theo gt)

AH ⊥ BC (vì AH là đường cao theo gt)

⇒ Δ vuông AHB= Δ vuông AHC ( cạnh huyền- cạnh góc vuông)

Sửa đề ( đề sai : HD // AC )
b) Ta có : Δ AHB = Δ AHC (câu a)

⇒ ∠BAH = ∠CAH ( 2 góc tương ứng) (1)

Ta lại có: HD // AC (gt )

⇒ ∠DHA = ∠HAC (so le trong) (2)
Từ (1), (2)⇒ ∠BAH =∠ DAH ⇔ AD = DH ( theo tính chất Δ cân) (*)

Có HD // AC ⇒ ∠ACB = ∠DHB ( đồng vị ) (3)
△ABC cân tại A ⇒ ∠ABC = ∠ACB ( tính chất tam giác cân ) (4)
Từ (3) và (4) ⇒ ∠ABC = ∠DHB ⇒ ΔBDH cân tại D
⇒BD = HD (**)

Từ (*) (**) ⇒AD=DH=BD

c) Ta có: Δ ABH = Δ ACH (câu a) ⇔ BH =HC (hai cạnh tương ứng)

⇒ AH là trung tuyến Δ ABC tại A ( 3)

Ta có : DH //AC ⇒ ∠DHB =∠ACB ( vì đồng vị )

mà ΔABC cân tại A(gt) ⇒ ∠ABC= ∠ACB

⇒ ∠DHB =∠DBH ⇒ DB =DH (theo tính chất Δ cân)

mà ta có AD=DH (câu b) ⇒ DA=DB

⇒ CD là trung tuyến Δ ABC tại C (4)

Từ (3), (4) , AC cắt CD tại G ⇒ G là trọng tâm Δ ABC

mà CE =EA ⇒ BE là trung tuyến Δ ABC tại B

⇒ BE qua G ⇒ B,G,E thẳng hàng

31 tháng 7 2019

a) Xét \(\Delta AMB\)và \(\Delta CMD\)có: 

     \(AM=CM\)(gt)

     \(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)

     \(BM=DM\left(gt\right)\)

Suy ra \(\Delta AMB=\)\(\Delta CMD\left(c-g-c\right)\)

b) \(\Delta AMB=\)\(\Delta CMD\)(c/m ở câu a) nên \(\widehat{BAM}=\widehat{DCM}\)

Mà hai góc này ở vị trí so le trong nên \(AB//CD\)(đpcm)

c) Do \(AB//CD\)(c/m ở câu b) nên \(\widehat{ABC}=\widehat{NCB}\)(so le trong)

Xét \(\Delta ABC\)và \(\Delta NCB\)có:

     \(AB=NC\)(cùng bằng \(CD\))

     \(\widehat{ABC}=\widehat{NCB}\)(cmt)

     \(BC\)     :cạnh chung

Suy ra \(\Delta ABC=\)\(\Delta NCB\left(c-g-c\right)\)

Suy ra \(\widehat{NBC}=\widehat{ACB}\)(hai góc tương ứng)

Mà hai góc này ở vị trí so le trong nên \(BN//AC\)(đpcm)

Bài quen quen, hình như là bài mình đăng