Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D=(x2+x+1)(x2-x+1)(x4-x2+1)(x8-x4+1)
\(=\left(\left(x^2+1\right)^2-x^2\right)\left(x^4-x^2+1\right)\left(x^8-x^4+1\right).\)
\(=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\left(x^8-x^4+1\right).\)
\(=\left(\left(x^4+1\right)^2-x^4\right)\left(x^8-x^4+1\right).\)
\(=\left(x^8+x^4+1\right)\left(x^8-x^4+1\right)=\left(x^8+1\right)-x^8=x^{16}+x^8 +1\)
6) c) x3 - x2 + x = 1
<=> x3 - x2 + x - 1 = 0
<=> (x3 - x2) + (x - 1) = 0
<=> x2 (x - 1) + (x - 1) = 0
<=> (x - 1) (x2 + 1) = 0
=> x - 1 = 0 hoặc x2 + 1 = 0
* x - 1 = 0 => x = 1
* x2 + 1 = 0 => x2 = -1 => x = -1
Vậy x = 1 hoặc x = -1
Bài 5:
a) Đặt \(A=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(\Rightarrow8A=3^{32}-1\)
\(\Rightarrow A=\frac{3^{32}-1}{8}\)
b) (7x+6)2 + (5-6x)2 - (10-12x)(7x+6)
=(7x+6)2 + (5-6x)2 - 2(5-6x)(7x+6)
\(=\left(7x+6-5+6x\right)^2\)
\(=\left(13x+1\right)^2\)
1) \(2x.\left(x-7\right)-\left(x+3\right)\left(x-2\right)-\left(x+4\right)\left(x-4\right)\)
\(=2x^2-14x-\left(x^2+x-6\right)-\left(x^2-4\right)\)
\(=-15x+10\)
b) \(2x.\left(x+1\right)^2-\left(x-1\right)^3-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=2x.\left(x^2+2x+1\right)-\left(x^3-3x^2+3x-1\right)-\left(x^3-8\right)\)
\(=2x^3+4x^2+2x-x^3+3x^2-3x+1-x^3+8\)
\(=7x^2-x+9\)
c) \(\left(x-5\right)\left(x+5\right)\left(x+2\right)-\left(x+2\right)^3\)
\(=\left(x+2\right).\left[\left(x-5\right)\left(x+5\right)-\left(x+2\right)^2\right]\)
\(=\left(x+2\right).\left(x^2-25-x^2-4x-4\right)\)
\(=\left(x+2\right)\left(-4x-29\right)\)
\(=-4x^2-37x-58\)
d) \(\left(x-3\right)^3+\left(x-5\right)\left(x^2+5x+25\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3-9x^2+27x-27+\left(x^3-125\right)-\left(x^3-1\right)\)
\(=x^3-9x^2+27x-151\)
e) \(\left(x-1\right)^3-\left(x-2\right)\left(x^2-2x+4\right)+3x^2+2x\)
\(=x^3-3x^2+3x-1-\left(x^3-8\right)+3x^2+2x\)
\(=5x+7\)
Nhẩm ấy, ko nháp âu
\(2x\left(x-7\right)-\left(x+3\right)\left(x-2\right)-\left(x+4\right)\left(x-4\right)\)
\(=2x^2-14x-\left(x^2-2x+3x-6\right)-\left(x^2-4x+4x-16\right)\)
\(=2x^2-14x-x^2+x-6-x^2+16\)
\(=-13x-10\)
\(2x\left(x+1\right)^2-\left(x-1\right)^3-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=2x\left(x^2+2x+1\right)-\left(x^3-3x^2+3x-1\right)-\left(x-2\right)\left(x+2\right)\)
\(-2x^3+4x^2+2x-x^3+3x^2-3x+1-x^2+4\)
\(=-3x^3+6x^2-x+5\)
(x + 1)3 - (x + 3)2.(x + 1) + 4x2 + 8 = x3 + 3x2 + 3x + 1 - (x2 + 6x + 9)(x + 1) + 4x2 + 8
= x3 + 7x2 + 3x + 9 - (x3 + 6x2 + 9x + x2 + 6x + 9) = -12x
(x - 2)(x2 + 2x + 4) - (x + 1)3 + 3(x - 1)(x + 1) = x3 + 2x2 + 4x - 2x2 - 4x - 8 - x3 - 3x2 - 3x - 1 + 3(x2 - 1)
= -9 - 3x2 - 3x + 3x2 - 3 = -12 - 3x
(x4 - 52 + 25)(x2 + 5) - (2 + x2)3 + 3(1 + x2)2 = x6 + 5x4 - 8 - 12x2 - 6x4 - x6 + 3(1 + 2x2 + x4) = -x4 - 12x2 - 8 + 3 + 6x2 + 3x4
= 2x4 - 6x2 - 5
a. gọi phần đầu đấy là A nhá, để đỡ cần viết lại
A=...............
= (3x+5)2 + ( 3x-5)2 - 9x2 -4
= (9x2 +30x + 25 ) + ( 9x2 -30x+ 25 ) - 9x2 -4
= 9x2 +30x + 25 + 9x2 -30x+25-9x2 -4
= 9x2 + 46
sai thì thôi nhé. bạn nên kiểm tra lại
d. (2x-1)*(4x2 + 2x +1 ) - 8x*( x2 +1) - 5
= 8x3 -1 - 8x3 -8x-5
= -8x-6
= -2(4x+3)
sai nhé. bạn nên kiểm tra lại
1) -3x( x + 2 )2 + ( x + 3 )( x - 1 )( x + 1 ) - ( 2x - 3 )2
= -3x( x2 + 4x + 4 ) + ( x + 3 )( x2 - 1 ) - ( 4x2 - 12x + 9 )
= -3x3 - 12x2 - 12x + x3 + 3x2 - x -3 - 4x2 + 12x - 9
= ( -3x3 + x3 ) + ( -12x2 + 3x2 - 4x2 ) + ( -12x - x + 12x ) + ( -3 - 9 )
= -2x3 - 13x2 - x - 12
2) ( x - 3 )( x + 3 )( x + 2 ) - ( x - 1 )( x2 - 3 ) - 5x( x + 4 )2 - ( x - 5 )2
= ( x2 - 9 )( x + 2 ) - ( x3 - x2 - 3x + 3 ) - 5x( x2 + 8x + 16 ) - ( x2 - 10x + 25 )
= x3 + 2x2 - 9x - 18 - x3 + x2 + 3x - 3 - 5x3 - 40x2 - 80x - x2 + 10x - 25
= ( x3 - x3 - 5x3 ) + ( 2x2 + x2 - 40x2 - x2 ) + ( -9x + 3x - 80x + 10x ) + ( -18 - 3 - 25 )
= -5x3 - 38x2 - 76x - 46
3) 2x( x - 4 )2 - ( x + 5 )( x - 2 )( x + 2 ) + 2( x + 5 )2 + ( x - 5 )2
= 2x( x2 - 8x + 16 ) - ( x + 5 )( x2 - 4 ) + 2( x2 + 10x + 25 ) + x2 - 10x + 25
= 2x3 - 16x2 + 32x - ( x3 + 5x2 - 4x - 20 ) + 2x2 + 20x + 50 + x2 - 10x + 25
= 2x3 - 16x2 + 32x - x3 - 5x2 + 4x + 20 + 2x2 + 20x + 50 + x2 - 10x + 25
= ( 2x3 - x3 ) + ( -16x2 - 5x2 + 2x2 + x2 ) + ( 32x + 4x + 20x - 10x ) + ( 20 + 50 + 25 )
= x3 - 18x2 + 46x + 95
a) (x - 1)(x + 1)(x2 + 1)(x4 + 1)(x8 + 1)
= (x2 - 1)(x2 + 1)(x4 + 1)(x8 + 1)
= (x4 - 1)(x4 + 1)(x8 + 1)
= (x8 - 1)(x8 + 1)
= x16 - 1
b) (a2 - 2b)(a2 + 2b)(a4 + 4b2)(a8 + 16b4)
= (a4 - 4b2)(a4 + 4b2)(a8 + 16b4)
= (a8 - 16b4)(a8 + 16b4)
= a16 - 256b8
\(a,x^2+4x-21-x^2-4x+5=-16\\ b,=\left(x+8-x+2\right)^2=10^2=100\\ c,=x^2\left(x^2-16\right)-\left(x^4-1\right)\\ =x^4-16x^2-x^4+1=1-16x^2\\ d,=x^3+1-x^3+1=2\)