Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{z}{5}=\frac{x}{2}=\frac{y}{3}=\frac{x.y-z}{2.3-5}=\frac{810}{1}=810\)
Từ \(\frac{x}{2}=810=>x=810.2=1620\)
Từ \(\frac{y}{3}=810=>y=2430\)
Từ \(\frac{z}{5}=810=>z=810.5=4050\)
Vậy x=1620
y=2430
z=4050
a) xlđ
b) Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) => \(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y-3z}{2+6-12}=\frac{-20}{-4}=5\)
=> \(\hept{\begin{cases}\frac{x}{2}=5\\\frac{y}{3}=5\\\frac{z}{4}=5\end{cases}}\) => \(\hept{\begin{cases}x=5.2=10\\y=5.3=15\\z=5.4=20\end{cases}}\)
Vậy ...
c) tt
a) \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) (1)
\(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) (2)
Từ (1);(2) suy ra: \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Theo đề: \(\left|x-2y\right|=5\)
\(\Rightarrow x-2y=5\) (nếu \(x-2y\ge0\Leftrightarrow x\ge2y\) )
\(x-2y=-5\) (nếu \(x< 2y\) )
Vậy có hai trường hợp
TH1: Nếu \(x\ge2y\) suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{5}{-5}=-1\)
\(\Rightarrow\hept{\begin{cases}x=15.\left(-1\right)=-15\\y=10.\left(-1\right)=-10\\z=6.\left(-1\right)=-6\end{cases}}\) (nhận)
TH2: Nếu x < 2y suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{-5}{-5}=1\)
\(\Rightarrow\hept{\begin{cases}x=15.1=15\\y=10.1=10\\z=6.1=6\end{cases}}\) (nhận)
b) \(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\) (1)
\(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\) (2)
Từ (1);(2) => \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k\)
\(\Rightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}\Rightarrow xy=6k.15k=90k^2=90\Rightarrow k^2=1\Rightarrow k=\left\{-1;1\right\}}\)
\(\Rightarrow\hept{\begin{cases}x=6.1=6\\y=15.1=15\\z=10.1=10\end{cases}}\) hoặc \(\hept{\begin{cases}x=6.\left(-1\right)=-6\\y=15.\left(-1\right)=-15\\z=10.\left(-1\right)=-10\end{cases}}\)
c) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
= \(\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)
= \(\frac{2x+2y+2z}{x+y+z}\)
= \(\frac{2\left(x+y+z\right)}{x+y+z}=2\)
=> \(\frac{1}{x+y+z}=2\) => x + y + z = 1/2
=> \(\frac{y+z+1}{x}=2\) => y + z + 1 = 2x
=> y + z + x + 1 = 3x
=> 1/2 + 1 = 3x
=> 3/2 = 3x
=> x = 3/2 : 3 = 1/2
=> \(\frac{x+z+2}{y}=2\) => x + z + 2 = 2y
=> x + z + y + 2 = 3y
=> 1/2 + 2 = 3y
=> 5/2 = 3y
=> y = 5/2 : 3 = 5/6
=> \(\frac{x+y-3}{z}=2\)=> x + y - 3 = 2z
=> x + y + z - 3 = 3z
=> 1/2 - 3 = 3z
=> 3z = -5/2
=> z = -5/2 : 3 = -5/6
Vậy ...
ta có:\(\frac{7}{2x+2}=\frac{3}{2y-4}\)=\(\frac{5}{z+4}\)=\(\frac{7+3}{2x+2+2y-4}=\frac{10}{2x+2y+2-4}=\frac{10}{2\left(x+y\right)-2}=\frac{5}{x+y-1}\)\(=\frac{5+5}{x+y+z-1+4}\)=\(\frac{10}{17-1+4}=\frac{10}{20}\)=\(\frac{1}{2}\)
từ đó bn tính ra nha
bạn bảo bạn làm câu a r nên mik thôi còn câu b là:
ta có
x-1/2 = y-2/3 = z-3/4 = 2x-2/4 = z-3/a
áp dụng t/c của dãy tỉ số = nhau, ta có:
2x-2+3y-6-z+3 / 4+9-4 = 2x+3y-z-5 / 9 = 50-5 / 9 =45 / 5 = 5
=>
x-1 / 2 = 5=>x-1=10 => x=11
y-2 / 3 = 5 => y-2 = 15 => y = 17
z-3 / 4 = 5=> z-3 = 20 =>z =23
tick nha bạn
Ta có : \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x-1}{2}=\frac{2\left(y-2\right)}{2.3}=\frac{4\left(z-3\right)}{4.3}\)
\(=\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{\left(x-1\right)-\left(2y-4\right)+\left(3z-9\right)}{2-6+12}\)
\(=\frac{x-1-2y+4+3z-9}{8}=\frac{\left(x-2y+3z\right)-\left(1-4+9\right)}{8}=\frac{14-6}{8}=\frac{8}{8}=1\)
\(\Rightarrow x=1.2+1=3\)
\(y=1.3+2=5\)
\(z=1.4+3=7\)
Vậy x=3, y=5, z=7