Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta co : 175 + 244 - 1321
=174.17 + ...6 - 134.5.13
= ...7 + ...6 - ...3
=...0
vi 175 + 244 - 1321 co chu so tan cung bang 0 chia het cho 10 nen 175+244+1321 chia het cho 10
ta co : 175 + 244 - 1321
=174.17 + ...6 - 134.5.13
= ...7 + ...6 - ...3
=...0
vi 175 + 244 - 1321 co chu so tan cung bang 0 chia het cho 10 nen 175+244+1321 chia het cho 10
A= ....1+(47^4)^25*47^2=....1+.....1*....9=....1+....9=....0chia hết cho 10
B=17^4*17+(24^2)^2-(13^4)^5*13=....1*17+....6-....1*13=.....7+....6-.....13=....3-....3=....0chia hết cho 10
a.2014100 + 201499
=201499.(2014+1)
=201499.2015
=> 2014100 + 201499 chia hết cho 2015
b.31994 + 31993 _ 31992
=31992.(32+3-1)
=31992.11
=>31994 + 31993 _ 31992 chia hết cho 11
c. 413 _ 325 _ 88
=(22)13-(25)5-(23)8
=226-225-224
=224.(22-2-1)
=224.5
=> 413 _ 325 _ 88 chia hết cho 5
a)\(2014^{100}+2014^{99}=2014^{99}.\left(2014+1\right)=2014^{99}.2015⋮2015\left(\text{Đ}PCM\right)\)
b)\(3^{1994}+3^{1993}-3^{1992}=3^{1992}.\left(3^2+3-1\right)=3^{1992}.\left(9+3-1\right)=3^{1992}.11⋮11\left(\text{Đ}PCM\right)\)
c)\(4^{13}-32^5-8^8=\left(2^2\right)^{13}-\left(2^5\right)^5-\left(2^3\right)^8=2^{26}-2^{25}-2^{24}=2^{24}.\left(2^2-2-1\right)\)
Đề sai rồi bạn 2^14 luôn tận cùng chẵn =>2^14 không chia hết cho 5
Chúc bạn học tốt
a)\(10^{19}+10^{18}+10^{17}=10^{17}\left(10^2+10+1\right)\)=1017.111=1016.2.5.111=1016.2.555 chia hết cho 555
b)\(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)=328-327-326=325(33-32-3)=325.15 chia hết cho 15
c)\(5^7-5^6+5^5=5^5\left(5^2-5+1\right)=5^5.21\) chia hết cho 21
d)\(7^6+7^5-7^4=7^3\left(7^3+7^2-7\right)=7^3.385=7^3.5.77\) chia hết cho 77
tham khảo câu b bài 1 ở link này https://olm.vn/hoi-dap/detail/88152567739.html
a) \(7^6+7^5-7^4=7^4.7^2+7^4.7+7^4.1\)
\(=7^4.\left(7^2+7-1\right)\)
\(=7^4.55\)
Mà \(55⋮11\Rightarrow7^4.55⋮11\Leftrightarrow7^6+7^5-7^4⋮11\left(đpcm\right).\)
b) \(10^9+10^8+10^7=10^6.10^3+10^6.10^2+10^6.10\)
\(=10^6.\left(10^3+10^2+10\right)\)
\(=10^6.1110\)
Mà \(1110⋮222\Rightarrow10^6.110⋮222\Leftrightarrow10^9+10^8+10^7⋮222\left(đpcm\right).\)
c) \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}\)
\(=3^{26}.3^2+3^{26}.3+3^{26}.1\)
\(=3^{26}.\left(3^2+3+1\right)\)
\(=3^{24}.3^2.5\)
\(=3^{24}.45\)
Mà \(45⋮45\Rightarrow3^{24}.45⋮45\Leftrightarrow81^7-27^9-9^{13}⋮45\left(đpcm\right).\)
d) \(24^{54}.54^{24}.2^{10}=\left(8.3\right)^{54}.\left(27.2\right)^{24}.2^{10}\)
\(=\left(2^3.3\right)^{54}.\left(3^3.2\right)^{24}.2^{10}\)
\(=\left(2^3\right)^{54}.3^{54}.\left(3^3\right)^{24}.2^{24}.2^{10}\)
\(=2^{162}.3^{54}.3^{72}.2^{34}\)
\(=2^{196}.3^{126}\)
\(=2^{189}.2^7.3^{126}\)
\(=\left[\left(2^3\right)^{63}.\left(3^2\right)^{63}\right].2^7\)
\(=\left(8^{63}.9^{63}\right).2^7\)
\(=72^{63}.2^7\)
Mà \(72^{63}⋮72^{63}\Rightarrow72^{63}.2^7⋮72^{63}\Leftrightarrow24^{54}.54^{24}.2^{10}⋮72^{63}\left(đpcm\right).\)