\(^{2^9+2^{99}}\) chia hết cho 100

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2023

1) Gọi hai số cần tìm là a2 và b2(a,b lớn hơn hoặc bằng 2)

Vì a2+ b2= 2234 là số chẵn -> a, b cùng chẵn hoặc cùng lẻ

Mà chỉ có một số nguyên tố chẵn duy nhất là 2 -> hai số đó cùng lẻ

 a2+ b= 2234 không chia hết cho 5

Giả sử cả a2, b2 đều không chia hết cho 5

-> a2,b2 chia 5 dư 1,4 ( vì là số chính phương)

Mà a2+ b= 2234 chia 5 dư 4 nên o có TH nào thỏa mãn -> Giả sử sai

Giả sử a=5 -> a2= 25

b2= 2209

b2= 472

-> b=47

                    Vậy hai số cần tìm là 5 và 47

 

22 tháng 12 2015

AI TRẢ LỜI NHANH VÀ ĐÚNG TỚ CHO 5 ****

TRÌNH BÀY

22 tháng 12 2015

Ta có:

\(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a+1\right)\left(a^2+2a\right)=a\left(a+1\right)\left(a+2\right)\)

Mà   \(a;a+1;a+2\)  lần lượt là  \(3\)  số nguyên liên tiếp nên tích của chúng chia hết cho  \(6\)

Do đó:

\(a^2\left(a+1\right)+2a\left(a+1\right)\)  chia hết cho  \(6\)  với  \(a\in Z\)

4 tháng 7 2017

29 + 299 = 29+ (211)9 = (2 + 211)(28 - 27.211 + ... - 2.277 + 288)

Thừa số thứ nhất 2 + 211 = 2050

Thừa số thứ hai chứa toàn các số chẵn, tức là có dạng 2A.

Do đó: 29+ 299 = 2050.2A = 4100A. Vậy số A = 29 + 299 chia hết cho 100.

4 tháng 10 2018

Thời gian có hạn copy cái này hộ mình vào google xem nha :

https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi

Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....

Có 500 giải nhanh nha đã có 200 người nhận rồi 

OKmm

4 tháng 10 2018

n3(n2 - 7)2 - 36n

= n[n2(n2 - 7)2 - 36]

= n[(n3 - 7n)2 - 62]

= n(n3 - 7n - 6)(n3 - 7n + 6)

= n(n3 - n - 6n - 6)(n3 - n - 6n + 6)

= n[n(n2 - 1) - 6(n + 1)][n(n2 - 1) - 6(n - 1)]

= n[n(n - 1)(n + 1) - 6(n + 1)][(n(n - 1)(n + 1) - 6(n - 1)]

= n(n + 1)[n(n - 1) - 6](n - 1)[n(n + 1)  - 6]

= n(n + 1)(n2 - n - 6)(n - 1)(n2 + n  - 6]

= n(n + 1)(n2 - 3n + 2n - 6)(n - 1)(n2 + 3n - 2n - 6)

= n(n + 1)[n(n - 3) + 2(n - 3)](n - 1)[n(n + 3) - 2(n + 3)]

= n(n + 1)(n + 2)(n - 3)(n - 1)(n - 2)(n + 3)

Đây là tích của bảy số nguyên liên tiếp. Trong bày số nguyên liên tiếp:

- Tồn tại một bội số của 5 (nên A chia hết cho 5)

- Tồn tại một bội số của 7 (nên A chia hết cho 7)

- Tồn tại hai bội số của 3 (nên A chia hết cho 9)

- Tồn tại 3 bội số của 2, trong đó có một bội số của 4 (nên A chia hết cho 16)

A chia hết cho các số 5, 7, 9, 16 từng đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040 (đpcm)

9 tháng 1 2016

13 + 23 + 3+ ... + 1003 

= (1 + 2 + 3 + ... + 100) x (12 + 22 + 3+.....+ 1002)

\(\Rightarrow\) ( 1 + 2 + 3 + ... + 100 ) x ( 12 + 22 + 32 + ... + 1002)  chia hết cho 1 + 2 + 3 + ... +100

Vậy 13 + 23 + 33 + ... + 100 sẽ chia hết cho 1 + 2 + 3 + .... + 100

Em chỉ mới lớp 7 thôi nên có thể sẽ có sai sót nhưng em mong Le vi dai sẽ tick cho em 

9 tháng 1 2016

Ta có:  \(B=\left(1+100\right)+\left(2+99\right)+...+\left(50+51\right)=101.50\)

Để chứng minh  \(A\)  chia hết cho  \(B\)  , ta cần chứng minh  \(A\)  chia hết cho  \(50\)  và  \(101\)

Ta có:  \(A=\left(1^3+100^3\right)+\left(2^3+99^3\right)+...+\left(50^3+51^3\right)\)

\(=\left(1+100\right)\left(1^2+100+100^2\right)+\left(2+99\right)\left(2^2+2.99+99^2\right)+...+\left(50+51\right)\left(50^2+50.51+51^2\right)\)

\(A=101\left(1^2+100+100^2+2^2+2.99+99^2+...+50^2+50.51+51^2\right)\)  

chia hết cho  \(101\)   \(\left(1\right)\)

Lại có:   \(A=\left(1^3+99^3\right)+\left(2^3+98^3\right)+...+\left(50^3+100^3\right)\)

Mỗi số hạng  trong dấu ngoặc đều chia hết cho  \(50\)  nên  \(A\)  chia hết cho \(50\)  \(\left(2\right)\)

Từ  \(\left(1\right)\)  và  \(\left(2\right)\)  suy ra \(A\)  chia hết cho  \(101\)  và  \(50\)  hay  \(A\)  chia hết cho  \(B\)