Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Gọi hai số cần tìm là a2 và b2(a,b lớn hơn hoặc bằng 2)
Vì a2+ b2= 2234 là số chẵn -> a, b cùng chẵn hoặc cùng lẻ
Mà chỉ có một số nguyên tố chẵn duy nhất là 2 -> hai số đó cùng lẻ
a2+ b2 = 2234 không chia hết cho 5
Giả sử cả a2, b2 đều không chia hết cho 5
-> a2,b2 chia 5 dư 1,4 ( vì là số chính phương)
Mà a2+ b2 = 2234 chia 5 dư 4 nên o có TH nào thỏa mãn -> Giả sử sai
Giả sử a=5 -> a2= 25
b2= 2209
b2= 472
-> b=47
Vậy hai số cần tìm là 5 và 47
Ta có:
\(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a+1\right)\left(a^2+2a\right)=a\left(a+1\right)\left(a+2\right)\)
Mà \(a;a+1;a+2\) lần lượt là \(3\) số nguyên liên tiếp nên tích của chúng chia hết cho \(6\)
Do đó:
\(a^2\left(a+1\right)+2a\left(a+1\right)\) chia hết cho \(6\) với \(a\in Z\)
Thời gian có hạn copy cái này hộ mình vào google xem nha :
https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 200 người nhận rồi
OKmm
n3(n2 - 7)2 - 36n
= n[n2(n2 - 7)2 - 36]
= n[(n3 - 7n)2 - 62]
= n(n3 - 7n - 6)(n3 - 7n + 6)
= n(n3 - n - 6n - 6)(n3 - n - 6n + 6)
= n[n(n2 - 1) - 6(n + 1)][n(n2 - 1) - 6(n - 1)]
= n[n(n - 1)(n + 1) - 6(n + 1)][(n(n - 1)(n + 1) - 6(n - 1)]
= n(n + 1)[n(n - 1) - 6](n - 1)[n(n + 1) - 6]
= n(n + 1)(n2 - n - 6)(n - 1)(n2 + n - 6]
= n(n + 1)(n2 - 3n + 2n - 6)(n - 1)(n2 + 3n - 2n - 6)
= n(n + 1)[n(n - 3) + 2(n - 3)](n - 1)[n(n + 3) - 2(n + 3)]
= n(n + 1)(n + 2)(n - 3)(n - 1)(n - 2)(n + 3)
Đây là tích của bảy số nguyên liên tiếp. Trong bày số nguyên liên tiếp:
- Tồn tại một bội số của 5 (nên A chia hết cho 5)
- Tồn tại một bội số của 7 (nên A chia hết cho 7)
- Tồn tại hai bội số của 3 (nên A chia hết cho 9)
- Tồn tại 3 bội số của 2, trong đó có một bội số của 4 (nên A chia hết cho 16)
A chia hết cho các số 5, 7, 9, 16 từng đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040 (đpcm)
13 + 23 + 33 + ... + 1003
= (1 + 2 + 3 + ... + 100) x (12 + 22 + 32 +.....+ 1002)
\(\Rightarrow\) ( 1 + 2 + 3 + ... + 100 ) x ( 12 + 22 + 32 + ... + 1002) chia hết cho 1 + 2 + 3 + ... +100
Vậy 13 + 23 + 33 + ... + 1003 sẽ chia hết cho 1 + 2 + 3 + .... + 100
Em chỉ mới lớp 7 thôi nên có thể sẽ có sai sót nhưng em mong Le vi dai sẽ tick cho em
Ta có: \(B=\left(1+100\right)+\left(2+99\right)+...+\left(50+51\right)=101.50\)
Để chứng minh \(A\) chia hết cho \(B\) , ta cần chứng minh \(A\) chia hết cho \(50\) và \(101\)
Ta có: \(A=\left(1^3+100^3\right)+\left(2^3+99^3\right)+...+\left(50^3+51^3\right)\)
\(=\left(1+100\right)\left(1^2+100+100^2\right)+\left(2+99\right)\left(2^2+2.99+99^2\right)+...+\left(50+51\right)\left(50^2+50.51+51^2\right)\)
\(A=101\left(1^2+100+100^2+2^2+2.99+99^2+...+50^2+50.51+51^2\right)\)
chia hết cho \(101\) \(\left(1\right)\)
Lại có: \(A=\left(1^3+99^3\right)+\left(2^3+98^3\right)+...+\left(50^3+100^3\right)\)
Mỗi số hạng trong dấu ngoặc đều chia hết cho \(50\) nên \(A\) chia hết cho \(50\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(A\) chia hết cho \(101\) và \(50\) hay \(A\) chia hết cho \(B\)