Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(2^n-1\)và \(2^n+1\)là 2 số lẻ liên tiếp
Đặt \(2^n-1=3k\)và \(2^n+1=3k+2\)\(k\inℕ\)
\(\Rightarrow\left(2^n-1\right).\left(2^n+1\right)=3k.\left(3k+2\right)\)
mà \(3k⋮3\)\(\Rightarrow3k.\left(3k+2\right)⋮3\)
hay \(A⋮3\left(đpcm\right)\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1^2}{x}+\frac{1^2}{y}+\frac{1^2}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)( Bất đẳng thức Svac-xơ )
Dấu = xảy ra khi \(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\)
BĐT trên
\(< =>\frac{xy+yz+xz}{xyz}\ge\frac{9}{x+y+z}\)
\(< =>\left(x+y+z\right)\left(xy+yz+xz\right)\ge9xyz\)
Áp dụng BĐT cô si cho 3 số :
\(x+y+z\ge3\sqrt[3]{xyz}\)
\(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}\)
Nhân vế với vế : \(\left(x+y+z\right)\left(xy+yz+xz\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{x^2y^2z^2}=9xyz\)
Nên ta có đpcm
Đặt \(\hept{\begin{cases}\sqrt{1+\frac{\sqrt{3}}{2}}=a\\\sqrt{1-\frac{\sqrt{3}}{2}}=b\end{cases}}\)
\(\Rightarrow a^2+b^2=2;ab=\frac{1}{2};a-b=1\)
\(\Rightarrow\frac{1+\frac{\sqrt{3}}{2}}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{1-\frac{\sqrt{3}}{2}}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}=\frac{a^2}{1+a}+\frac{b^2}{1-b}\)
\(=\frac{a^2+b^2-ab\left(a-b\right)}{1-ab+\left(a-b\right)}=\frac{2-\frac{1}{2}.1}{1-\frac{1}{2}+1}=1\)
n là số nguyên dương
Bình phương hai vế, ta được:
\(\left(\sqrt{n+2}-\sqrt{n+1}\right)^2=n+2+n+1-2\sqrt{\left(n+2\right)\left(n+1\right)}\) \(=2n+3-2\sqrt{\left(n+2\right)\left(n+1\right)}\)
\(\left(\sqrt{n+1}-\sqrt{n}\right)^2=n+1+n-2\sqrt{n\left(n+1\right)}\) \(=2n+1-2\sqrt{n\left(n+1\right)}\)
Ta có: \(\left(n+2\right)\left(n+1\right)>n\left(n+1\right)\Rightarrow2\sqrt{\left(n+2\right)\left(n+1\right)}>2\sqrt{n\left(n+1\right)}\)
Mà 2n + 3 > 2n + 1
\(\Rightarrow2n+3-2\sqrt{\left(n+2\right)\left(n+1\right)}>2n+1-2\sqrt{n\left(n+1\right)}\)
=> ( √n+2 - √n+1)^2 > ( √n-1 - √n)^2
=> √n+2 - √n+1 > √n-1 - √n
P/s: Em làm còn sai nhiều, mong mọi người góp ý, đừng chọn sai cho em. Em cảm ơn
ĐKXĐ: \(x\ge\frac{3}{2}\)
PT (=) \(\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}+4\right)^2}=7\)
(=) \(\sqrt{2x-3}+1+\sqrt{2x-3}+4=7\)
(=) \(2\sqrt{2x-3}=2\) (=) \(\sqrt{2x-3}=1\)(=) 2x = 4 (=) x = 2 ( Thỏa mãn điều kiện )
Vậy x=2
\(B=\frac{1}{-\left(x-2\sqrt{x}+1\right)-2}=\frac{1}{-\left(\sqrt{x}-1\right)^2-2}\)
\(\left(\sqrt{x}-1\right)^2\ge0\Leftrightarrow-\left(\sqrt{x}-1\right)^2\le0\)
\(\Leftrightarrow-\left(\sqrt{x}-1\right)^2-2\le-2\)
\(\Leftrightarrow\frac{1}{-\left(\sqrt{x}-1\right)^2-2}\ge\frac{1}{-2}=\frac{-1}{2}\)
\("="\Leftrightarrow x=1\)
Vậy biểu thức B đạt giá trị nhỏ nhất là -1/2 khi x=1
Em tìm điều kiện xác định của bài toán.
Sau đó bình phương hai vế lên (cả hai vế đều >0) xem ra kết quả gì?
n>4 nữa nha bạn
Ta có:\(A=n^4-4n^3-4n^2+16n\)
\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)
\(=n^3\left(n-4\right)-4n\left(n-4\right)\)
\(=\left(n-4\right)\left(n^3-4n\right)\)
\(=n\left(n-3\right)\left(n^2-4\right)\)
\(=n\left(n-2\right)\left(n+2\right)\left(n-4\right)\)
Do n là số chẵn và n>4 nên đặt \(n=2k+2\left(k>1\right)\).
\(\Rightarrow A=\left(2k+2\right)\left(2k+4\right)\left(2k-2\right)2k\)
\(=16k\left(k-1\right)\left(k+1\right)\left(k+2\right)\)
\(=16\left(k-1\right)k\left(k+1\right)\left(k+2\right)\)
Do \(\left(k-1\right)k\left(k+1\right)\left(k+2\right)\) là tích 4 số nguyên dương liên tiếp nên chúng chia hết cho 2.3.4=24
Vậy A chia hết cho 16*24=384(đpcm)