Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề có thiếu hay thừa gì ko nhỉ? tại cái này hình như vế trái gồm 2 dãy quy luật.dãy có các số hạng là bội của 1/7 ko thấy số cuối =="
\(A=\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
\(7^2.A=1-\frac{1}{7^2}+\frac{1}{7^4}-...+\frac{1}{7^{100}}-\frac{1}{7^{102}}\)
\(\Rightarrow49A+A=1-\frac{1}{7^{102}}<1\)
\(50A<1\Rightarrow A<\frac{1}{50}\)
Ta đặt : A = 1/7 2 - 1/7 4 + ... + 1/7 9s - 1/7 100
=> : A = 1 - 1/7 2 + 1/7 4 -... + 1/7 100 - 1/7 102
=< : 49 + 4 = 1 - 1/7 102 < 1
<=> : 50A < 1 => 1/50
mk biết rõ lun
Đặt \(A=\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}+\frac{1}{7^8}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
Nhân \(\frac{1}{7^2}\)vào A. Ta được:
\(A.\frac{1}{7^2}=\frac{1}{7^4}-\frac{1}{7^6}+\frac{1}{7^8}-...-\frac{1}{7^{98}}+\frac{1}{7^{100}}+\frac{1}{7^{102}}\)
\(A=\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-\frac{1}{7^8}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
Ta có: \(\frac{1}{7^2}.A+A=\frac{1}{49}-\frac{1}{7^{102}}\Rightarrow\frac{50}{49}.A=\frac{1}{49}-\frac{1}{7^{102}}\)
\(\Rightarrow A=\left(\frac{1}{49}-\frac{1}{7^{102}}\right)\frac{49}{50}< \frac{1}{5}^{\left(đpcm\right)}\)
Gọi \(A=\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
\(49A=1-\frac{1}{7^2}+\frac{1}{7^4}-...+\frac{1}{7^{96}}-\frac{1}{7^{98}}\)
\(49A+A=\left(1-\frac{1}{7^2}+\frac{1}{7^4}-...+\frac{1}{7^{96}}-\frac{1}{7^{98}}\right)+\left(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\right)\)
\(50A=1-\frac{1}{7^{100}}\)
\(A=\frac{1-\frac{1}{7^{100}}}{50}< \frac{1}{50}\) ( cùng mẫu, tử bé hơn nên bé hơn )
Vậy \(A< \frac{1}{50}\)
Chúc bạn học tốt ~
Đặt \(S=\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-\frac{1}{7^8}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
\(\Rightarrow7^2S=1-\frac{1}{7^2}+\frac{1}{7^4}-\frac{1}{7^6}+....+\frac{1}{7^{96}}-\frac{1}{7^{98}}\)
\(\Rightarrow49S=1-S-\frac{1}{7^{100}}\)
\(\Rightarrow49S+S=1-S-\frac{1}{7^{100}}+S\)
\(\Rightarrow50S=1-\frac{1}{7^{100}}<1\Rightarrow50S<1\Rightarrow S<\frac{1}{50}\left(đpcm\right)\)
M = 512 - 512/2 - .... - 512/2^10
= 2^9 - 2^9 / 2 - 2^9/2^2 - ...2^9/2^10
= 2^9 - 2^8 - 2^7 - 2^6 -.... - 1/2
2M = 2^10 - 2^9 - 2^8 - .... - 1
2M - M = 2^10 - 2^9 - 2^8 -... -1 - 2^9 + 2^8 + 2^7 +... + 1 + 1/2
M = 2^10 - 2.2^9 + 1/2
M = 2^10 - 2^10 + 1/2
M = 1/2
Đặt \(A=\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
\(\Rightarrow49A=1-\frac{1}{7^2}+...+\frac{1}{7^{4n-4}}-\frac{1}{7^{4n}}+..+\frac{1}{7^{96}}-\frac{1}{7^{98}}\)
\(\Rightarrow49A+A=50A=1-\frac{1}{7^{100}}\)
\(\Rightarrow A=\frac{1-\frac{1}{7^{100}}}{50}=\frac{1}{50}-\frac{1}{7^{100}.50}< \frac{1}{50}\left(ĐPCM\right)\)