Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(7^6+7^5-7^4\)
\(=\left(7^2+7-1\right).7^4\)
\(=\left(49+7-1\right).7^4\)
\(=55.7^4\)
\(\Rightarrow55.7^4⋮55\)
\(\Rightarrow7^6+7^5-7^4⋮55\)
Có 7^6 + 7^5 - 7^4 = 7^4(7^2 + 7) = 7^4(7^2 + 7 -1 ) = 7^4 . 55 chia hết cho 55
suy ra 7^6 + 7^5 - 7^4 chia hết cho 55 ( đpcm)
Bài 2: a)
\(5^5-5^4+5^3=5^3\left(5^2-5+1\right)=5^3.21=5^3.3.7\) chia hết cho \(7\)
Vậy \(5^5-5^4+5^3\) luôn chia hết cho \(7\)
b) \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55\) chia hết cho \(7\)
Vậy \(7^6+7^5-7^4\)chia hết cho \(7\)
Bài 2:
a/ Vì: \(5^5-5^4+5^3=3125-625+125=2625\)
Lấy 2625 chia cho 7 cho kết quả: \(2625:7=375\)
Suy ra: \(5^5-5^4+5^3\) chia hết cho 7
b/ Vì: \(7^6+7^5-7^4=117649+16807-2401=132055\)
Lấy 132055 chia cho 7 cho kết quả: \(132055:7=18865\)
Suy ra : \(7^6+7^5-7^4\) chia hết cho 7
Câu a thì em biết đáp án nhưng không biết trả lời sao, nhờ các bạn trả lời câu a đó
b,817-279-913=(34)7-(33)9-(32)13
=328-327-326=326.32-326.3-326=326.(32-3-1)=326.5=322.34.5
=322.405 chia hết cho 405
=>817-279-913 chia hết cho 405
Ai tick mik mik tick lai cho
bạn vào câu hỏi tương tự nha
mọi người tick mik nha,cảm ơn các bạn
P=7(1+7+72+73+...+72015)
P=7[(1+7+72+73)+(74+75+76+77)+...+(72012+72013+72014+72015)]
P=7[400+74(1+7+72+73)+...+72012(1+7+72+73)]
P=7[400(1+74+...+72012)]
P=202[7(1+74+...+72012)] chia hết cho 202 (đpcm)
a, \(A=\frac{2^{12}\cdot3^5-4^6\cdot9^2}{(2^2\cdot3)^6+8^4\cdot3^5}-\frac{5^{10}\cdot7^3-25^5\cdot49^2}{(125\cdot7)^3+5^9\cdot14^3}\)
\(A=\frac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^5}-\frac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot2^3\cdot7^3}\)
\(A=\frac{2^{12}\cdot3^4(3-1)}{2^{12}\cdot3^5(3+1)}-\frac{5^{10}\cdot7^3(1-7)}{5^9\cdot7^3(1+2^3)}\)
\(A=\frac{2^{12}\cdot3^4\cdot2}{2^{12}\cdot3^5\cdot4}-\frac{5^{10}\cdot7^3\cdot(-6)}{5^9\cdot7^3\cdot9}=\frac{1}{6}-\frac{-10}{3}=\frac{7}{2}\)
b,\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=(3^{n+2}+3^n)-(2^{n+2}-2^n)\)
\(=(3^n\cdot3^2+3^n)-(2^n\cdot2^2-2^n)\)
\(=3^n\cdot(3^2+1)-2^n\cdot(2^2+1)\)
\(=3^n\cdot9+1-2^n\cdot4+1\)
\(=3^n\cdot10-2^n\cdot5\)
Vì \(2\cdot5⋮10\Rightarrow2^n\cdot5⋮10\)
\(3^n\cdot10⋮10\)
Vậy : ....
\(1+7+7^2+...+7^{99}=\left(1+7\right)+7^2\left(1+7\right)+7^4\left(1+7\right)+...+7^{98}\left(1+7\right)\)
\(=\left(1+7\right)\left(1+7^2+...+7^{98}\right)=8\left(1+7^2+...+7^{98}\right)⋮8\left(đpcm\right)\)
Ta có : \(1+7+7^2+7^3+...+7^{99}\)
\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{98}+7^{99}\right)\)
\(=\left(1+7\right)+7^2.\left(1+7\right)+...+7^{98}.\left(1+7\right)\)
\(=8+7^2.8+....+7^{98}.8\)
\(=8.\left(1+7^2+...+7^{98}\right)⋮8\)
\(\Rightarrow1+7+7^2+7^3+...+7^{99}⋮8\left(đpcm\right)\)
Bài 1:
Nếu a,b,c # 0 thì theo tính chất của dãy tỉ số bằng nhau , ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Nếu a + b + c = 0 thì b + c = -a ; c + a = - b ; a + b = -c
<=> Tỉ số của \(\frac{a}{b+c};\frac{c}{c+a};\frac{c}{a+b}\) Bằng -1
7^5+7^6-7^4=7^4.7+7^4.7^2-7^4=7^4.(7+7^2-1)=7^4.55 chia hết cho 55\(\Rightarrow\)7^5+7^6-7^4 chia hết cho 55