K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2015

a)Gọi 2 số lẻ liên tiếp là:n và n+2;ƯCLN(n;n+2)=d

=>n chia hết cho d và n+2 chia hết cho d

=>(n+2)-n chia hết cho d

=>2 chia hết cho d

=>d thuộc Ư(2)={1;2}

Mà n và n+2 là số lẻ =>ƯCLN(n;n+1)=1

=> điều phải chứng minh

 

4 tháng 4 2015

b)

Ta có:1/2-1/4+1/8-1/16+1/32-1/64=(1/2-1/4)+(1/8-1/16)+(1/32-1/64)

=(2/4-1/4)+(2/16-1/16)+(2/64-1/64)

=1/4+1/16+1/64

=16/64+4/64+1/64

=21/64=63/192

Ta có:1/3=64/192

Mà63/192<64/192

=>điều phải chứng minh

20 tháng 9 2017

đề sai phải không bạn

3 tháng 6 2019

HÈ RỒI ÍT  NGƯỜI LÀM LẮM

3 tháng 6 2019

VỚI LẠI LÀ KO BIẾT ĐANG HỌC LỚP 5 LÊN LỚP 6

11 tháng 4 2019

\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}\)

\(\Rightarrow A>\frac{1}{70}+\frac{1}{70}+\frac{1}{70}+...+\frac{1}{70}\)(60 số hạng)

\(\Rightarrow A>\frac{60}{70}>\frac{60}{80}=\frac{3}{4}\)

Vậy \(A>\frac{3}{4}\left(đpcm\right)\)

11 tháng 4 2019

\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}\)

\(\Rightarrow A>\frac{1}{70}+...+\frac{1}{70}\)(60 số hạng)

\(\Rightarrow A>\frac{60}{70}>\frac{60}{60}=\frac{3}{4}\)

5 tháng 7 2018

Ta có:\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};..........;\frac{1}{2012^2}< \frac{1}{2011.2012}\)

Nên \(\frac{1}{2^2}+\frac{1}{3^2}+........+\frac{1}{2012^2}< \frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{2011.2012}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.........+\frac{1}{2011}-\frac{1}{2012}\)

\(=1-\frac{1}{2012}< 1\)

5 tháng 7 2018

ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};\frac{1}{5^2}< \frac{1}{4.5};...;\frac{1}{2011^2}< \frac{1}{2010.2011};\)\(\frac{1}{2012^2}< \frac{1}{2011.2012}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}\)\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2010.2011}+\frac{1}{2011.2012}\)\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2010}-\frac{1}{2011}+\frac{1}{2011}-\frac{1}{2012}\)

\(=1-\frac{1}{2012}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}+\frac{1}{2012^2}< 1\left(đpcm\right)\)

2 tháng 4 2016

Đặt 1/3_2/3^2+3/3^3_.......+99/3^99_100/3^100<3/16=A

3A=1_2/3+3/3^2_4/3^3+....+99/3^98_100/3^99

Lấy 3A+A=4A=1_1/3+1/3^2_1/3^3+1/3^4_....._1/3^99_100/3^100

4A<1_1/3+1/3^2_1/3^3+1/3^4_...+1/3^98_1/3^99(1)

Đặt B=1_1/3+1/3^2_1/3^3_1/3^4_....+1/3^98_1/3^99

3B=2+1/3_1/3^2+1/3^3+......+1/3^97_1/3^98

4B=3_1/3^99<3 suy ra 4B<3 suy ra B<3/4(2)

Từ (1) và (2) suy ra 4A<3/4

                  Suy ra A<3/16