Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
22.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9
=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9
=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9
=(10n.15−3)2=(10n.15−3)2
Vậy A là Số Chính Phương (đpcm)
Đặt ƯCLN(20n+9 ; 30n+13) = d
=> 3.(20n + 9) - 2.(30n + 13) chia hết cho d
=> 60n + 27 - 60n + 26 chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy ƯCLN(20n+9 ; 30n+13) = 1 nên 20n + 9 và 20n + 13 nguyên tố cùng nhau
Đặt ƯCLN(20n+9 ; 30n+13) = d
=> 3.(20n + 9) - 2.(30n + 13) chia hết cho d
=> 60n + 27 - 60n + 26 chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy ƯCLN(20n+9 ; 30n+13) = 1 nên 20n + 9 và 20n + 13 nguyên tố cùng nhau
a. Với mọi n thì n có dạng 2k hoặc 2k + 1
* Với n = 2k
Ta có : (n + 9 ) ( n + 12 ) = ( 2k + 9 ) ( 2k + 12 )
<=> (n + 9 ) ( n + 12 ) = 2(k + 6)( 2k + 9 ) ( 2k + 12 ) \(⋮\)2 ( 1 )
* Với n = 2k + 1
Ta có : (n + 9 ) ( n + 12 ) = ( 2k + 1 + 9 ) ( 2k + 1 + 12 )
<=> (n + 9 ) ( n + 12 ) = ( 2k + 10 ) ( 2k + 13 )
<=> (n + 9 ) ( n + 12 ) = 2( k + 5 ) ( 2k + 13 ) \(⋮\)2 ( 2 )
Từ ( 1 ) và ( 2 ) suy ra A = ( n + 9 ).( n + 12 ) luôn là số chẵn
b. B = n2 + n + 3
<=> B = n( n + 1 ) + 3
Mà n( n + 1 ) luôn chẵn nên n( n + 1 ) + 3 lẻ
Suy ra B = n2 + n + 3 luôn là số lẻ
a) \(\frac{91}{1.4}+\frac{91}{4.7}+...+\frac{91}{88.91}=\frac{91}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{88.91}\right)\)
\(=\frac{91}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{88}-\frac{1}{91}\right)=\frac{91}{3}\left(1-\frac{1}{91}\right)=\frac{91}{3}.\frac{90}{91}=30\left(\text{đpcm}\right)\)
\(10^{100}+10^{51}+25=\left(10^{50}\right)^2+10\cdot10^{50}+25\)
\(=\left(10^{50}\right)^2+2\cdot10^{50}+5+5^2=\left(10^{50}+5\right)^2\)là SCP (Đpcm)
Bạn tham khảo:
https://olm.vn/hoi-dap/detail/77317967202.html?pos=148159670563
22.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+922.102n+1+4.102n+(10n−2−1).10n+2+1.10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9=220.102n+4.102n+102n−10n+2+10n+1+9
=102n.225−10n(100−10)+9=102n.225−10n(100−10)+9
=(10n.15)2−90.10n+9=(10n.15)2−90.10n+9
=(10n.15−3)2=(10n.15−3)2
Vậy A là Số Chính Phương (đpcm)