K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2015

từ A=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)

=>A=x2-ax-bx+ab+x2-bx-cx+bc+x2-cx-ax+ac

=>A=3x2-2ax-2bx-2cx+ab+bc+ac

=>A=3x2-2x(a+b+c)+ab+bc+ac

mà a+b+c=2x(gt)

=>A=3x2-2x.2x+ab+bc+ac

=>A=3x2-4x2+ab+bc+ac

=>A=ab+bc+ac-x2=VP

Vậy ...........................................

25 tháng 8 2017

Với a = 1, b = 4, c = 2, d = 3 thì  a + b = 5 =c + d.

          Biến đổi:  P(x)  = (x + 1)(x + 4)( x + 2)( x + 3) – 15

                               = (x2 + 5x + 4)(x2 + 5x + 6) – 15

          Đặt y = x2 + 5x + 4 thì P(x) trở thành

          Q(y) = y(y + 2) – 1

           = y+2y – 15

           = y2 – 3y + 5y – 15

           = y(y – 3) + 5( y – 3)

           = (y – 3)(y + 5)

     Do đó: P(x) = (x2 +5x + 1)(x2 + 5x + 9)

19 tháng 6 2017

\(VT=\left(x+a\right)\left(x+b\right)\left(x+c\right)\)

\(=\left(x^2+bx+ax+ab\right)\left(x+c\right)\)

\(=x^3+bx^2+ax^2+abx+cx^2+bcx+acx+abc\)

\(=x^3+\left(ax^2+bx^2+cx^2\right)+\left(abx+bcx+cax\right)+abc\)

\(=x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc=VP\)

\(\Rightarrowđpcm\)

23 tháng 6 2017

Ta có: (x+a)(x+b)(x+c) = x3 + (a+b+c)x2 +(ab+bc+ca)x + abc

VT = (x2+ax+bx+ab)(x+c)

= x3 + ax2 + bx2 + abx + cx2 + cax + bcx + abc (1)

VP = x3 + (a+b+c)x2 +(ab+bc+ca)x + abc

= x3 + ax2 + bx2 + abx + cx2 + cax + bcx + abc (2)

Từ (1) và (2), suy ra:

(x+a)(x+b)(x+c) = x3 + (a+b+c)x2 +(ab+bc+ca)x + abc

6 tháng 7 2017

a. \(VT=\left(x+a\right)\left(x+b\right)=x^2+ã+bx+ab=x^2+\left(a+b\right)x+ab=VP\)

B. \(VT=\left(x+a\right)\left(x+b\right)\left(x+c\right)=\left[\left(x+a\right)\left(x+b\right)\right].\left(x+c\right)\)

\(=\left[\left(x^2+\left(a+b\right)x\right)+ab\right].\left(x+c\right)=x^3+x^2c+\left(a+b\right)x^2+c\left(a+b\right)x+abx+abc\)

\(=x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc=VP\)

21 tháng 3 2019

\(4.\)

\(a.A=5-8x-x^2\)

\(=-\left(16+8x+x^2\right)+21\)

\(=-\left(4+x\right)^2+21\le21\)

\(A_{max}=21\)

Dấu '='xảy ra khi \(x=-4\)

\(b.B=5-x^2+2x-4y^2-4y\)

\(=-\left(1-2x+x^2\right)-\left(4+4y+4y^2\right)+10\)

\(=-\left(1-x\right)^2-\left(2+2y\right)^2+10\le10\)

\(B_{max}=10\)

Dấu '=' xảy ra khi \(x=1;y=-1\)

\(5.\)

\(a.\) Ta có:\(a^2+b^2+c^2=ab+bc+ca\)

              \(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

              \(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

              \(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

              \(\Leftrightarrow a-b=0\Leftrightarrow a=b\left(1\right)\)

              hay\(b-c=0\Leftrightarrow b=c\left(2\right)\)

             hay\(c-a=0\Leftrightarrow c=a\left(3\right)\)

Từ \(\left(1\right),\left(2\right)\)\(\left(3\right)\)suy ra:\(a=b=c\left(đpcm\right)\)

\(b.a^2-2a+b^2+4b+4c^2-4c+6=0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\)

\(\Leftrightarrow a-1=0\Leftrightarrow a=1\)

hay\(b+2=0\Leftrightarrow b=-2\)

hay\(2c-2=0\Leftrightarrow c=1\)

V...

^^

23 tháng 7 2018

c)  \(VT=\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3-a^3-b^3-c^3\)

\(=a^3+b^3+c^3+3ab\left(a+b\right)+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3-c^3\)

\(=3\left(a+b\right)\left[ab+c\left(a+b+c\right)\right]\)

\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)

d)  \(VT=a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=VP\)

I don't now

...............

.................

9 tháng 6 2016

TC:a+b+cd=2p=>b+c=2p-a

=>(b+c)2=(2p-a)2

=>b2+2bc+c2=4p2-4pa+a2

=>b2+2bc+c2-a2=4p2-4pa

=>2bc+b2+c2-a2=4p(p-a) ĐPCM

9 tháng 6 2016

Ta có : \(a+b+cd=2p\Rightarrow b+c=2p-a\)

\(\Rightarrow\left(b+c\right)^2=\left(2p-a\right)^2\)

\(\Rightarrow b^2+2bc+c^2=4p^2-4pa+a^2\)

\(\Rightarrow b^2+2bc+c^2-a^2=4p^2-4pa\)

\(\Rightarrow2bc+b^2+c^2-a^2=4p\left(p-a\right)\)

\(\RightarrowĐPCM\)

22 tháng 8 2016

a ) VP = \(\left(x+a\right).\left(x+b\right)=x^2+bx+ax+ab\)

     VT = \(x^2+\left(a+b\right).x+ab=x^2+ax+bx+ab\)

\(\Rightarrow VT=VP\)

b ) VP : \(\left(x+a\right).\left(x+b\right)\left(x+c\right)=\left(x^2+bx+ax+ab\right).\left(x+c\right)\) ( Vế đầu áp dụng luôn ở câu a )

\(=x^2.x+x^2.c+bx.x+bx.c+ax.x+ax.c+ab.x+ab.c\)

\(=x^3+cx^2+bx^2+cbx+ax^2+cax+abx+abc\)

\(=x^3+\left(cx^2+bx^2+ax^2\right)+\left(cbx+cax+abx\right)+abc\)

\(=x^3+\left(a+b+c\right)x^2+\left(ab+ac+bc\right).x+abc\)

Vậy \(\left(x+a\right).\left(x+b\right).\left(x+c\right)=x^3+\left(a+b+c\right).x^2+\left(ab+ca+bc\right).x+abc\)

22 tháng 8 2016

a) VP =\(\left(x+a\right)\left(x+b\right)=x^2+bx+\text{ax+ab}\)

\(VT=x^2+\left(a+b\right).x+ab=x^2+ax+bx+ab\\ =>VT=VP\)

b) VP : \(\left(x+a\right).\left(x+b\right).\left(x+c\right)=\left(x^2+bx+ax+ab\right).\left(x+c\right)\)( Vế đầu áp dụng luôn ở câu a )

\(=x^2.x+x^2.c+bx.x+bx.c+\text{ax}.x+\text{ax}.c+ab.c+ab.c\\ =x^3+cx^2+bx^2-cbx+\text{ax}^2+ca.x+ab.x+abc\\ \)

\(=x^3+\left(cx^2+bx^2+\text{ax}^2\right)-\left(cbx+c\text{ax}+abx\right)+abc\\ =x^3-\left(a+b+c\right)x^2+\left(ab+ac+bc\right).x+abc\)

Vậy \(\left(x+a\right)\left(x-b\right)\left(x+c\right)=x^3+\left(a+b+c\right).x^2+\left(ab+ca+bc\right).x+abc\)

 

4 tháng 7 2019

a) \(A=5-8x-x^2\)

        \(=-\left(x^2+8x-5\right)\)

        \(=-\left(x^2+2.x.4+4^2-16-5\right)\)

        \(=-\left[\left(x+4\right)^2-21\right]\)

        \(=-\left(x+4\right)^2+21\le21\)

       Dấu "=" khi x + 4 = 0 => x = -4

       Vậy GTLN của A là 21 khi x = -4

b) \(B=5-x^2+2x-4y^2-4y\)

       \(=-\left(x^2-2x+4y^2+4y-5\right)\)

       \(=-\left[x^2-2x+1+\left(2y\right)^2+2.2y.1+1-7\right]\)

      \(=-\left[\left(x-1\right)^2+\left(2y+1\right)^2\right]+7\le7\)

    Dấu "=" khi \(\hept{\begin{cases}x-1=0\\2y+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=\frac{-1}{2}\end{cases}}}\)

   Vậy GTLN của B là 7 khi x = 1 và y = -1/2

c) Theo đề: \(a^2+b^2+c^2=ab+bc+ca\)

           \(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

         \(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

          \(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2=0\)

         \(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

          \(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c}\)(ĐPCM)

d) \(a^2-2a+b^2+4b+4c^2-4c+6=0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(\text{4c^2}-4c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}a-1=0\\b+2=0\\2c-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=-2\\c=\frac{1}{2}\end{cases}}}\)

   Vậy nghiệm phương trình: a = 1; b = -2; c = 1/2

Chúc bạn học tốt ^_^

      

4 tháng 7 2019

sao ko ai giúp nhỉ ;(