Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(x+3\right)^2+\left(x^2-9\right)^2=0\)
vì: (x + 3)2 \(\ge\)0; (x2 - 9)2 \(\ge\)0
=> \(\hept{\begin{cases}x+3=0\\x^2-9=0\end{cases}}\) => \(\hept{\begin{cases}x=-3\\x^2=9\end{cases}}\)
=> \(\hept{\begin{cases}x=-3\\x=\pm3\end{cases}}\) => \(x=-3\)
=> -3 là nghiệm cảu đa thức (x + 3)2 + (x2 - 9)2
Trả lời:
( x + 3 )2 + ( x2 - 9 )2 = 0
<=> [ ( x + 3 ) - ( x2 - 9 ) ] [ ( x + 3 ) + ( x2 - 9 ) ] = 0
<=> [ ( x + 3 ) - ( x - 3 ) ( x + 3 ) ] [ ( x + 3 ) + ( x - 3 ) ( x + 3 ) ] = 0
<=> [ ( x + 3 ) ( 1 - x + 3 ) ] [ ( x + 3 ) ( 1 + x - 3 ) ] = 0
<=> ( x + 3 ) ( 1 - x + 3 ) ( x + 3 ) ( 1 + x - 3 ) = 0
<=> ( x + 3 )2 ( 4 - x ) ( x - 2 ) = 0
<=> ( x + 3 )2 = 0 hoặc 4 - x = 0 hoặc x - 2 = 0
<=> x = - 3 hoặc x = 4 hoặc x = 2
Vậy x = - 3; x = 4; x = 2
a, 2x^2 + 5x = 0
=> x(2x + 5) = 0
=> x = 0 hoặc 2x + 5 = 0
=> x = 0 hoặc x = -5/2
b. x^2 - 1 = 0
=> (x - 1)(x + 1) = 0
=> x - 1 = 0 hoặc x + 1 = 0
=> x = 1 hoặc x - -1
Ta có: - x2 - 1 = 0
-x2 = 1
-1 = x2
x2 = -1
vì không có số nào bình phương bằng số âm nên đa thức -x2-1 không có nghiệm
K CHO MIK NHA
X2 + 7X -8 =0
(X - 1 ) x (X + 8 ) =0
<=> X -1 =0
X +8 = 0
<=> X = 1
X = - 8
x2 + 7x - 8 = 0
x2 + 7/2x + 7/2x + 49/4 - 49/4 - 8 = 0
x (x + 7/2) + 7/2 (x + 7/2) - 81/4 = 0
(x + 7/2) (x + 7/2) = 81/4
(x + 7/2)2 = (9/2)2
-> x + 7/2 = 9/2 hay x + 7/2 = -9/2
x = 1 x = -8
Vậy x = 1; x = -8
Đa thức có nghiệm kết quả phải = 0
Mà M(x) và A(x) ko có = 0
=) M(x) và A(x) ko có nghiệm
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow2.\left(x-3\right)^2+5\ge5\forall x\)
Vậy đa thức trên ko có nghiệm
a) \(f\left(x\right)-g\left(x\right)=\left[x\left(x^2-2x+7\right)-1\right]-\left[x\left(x^2-2x-1\right)-1\right]\)
\(f\left(x\right)-g\left(x\right)=x^3-2x^2+7x-1-x^3+2x^2+x+1\)
\(f\left(x\right)-g\left(x\right)=8x\)
\(f\left(x\right)+g\left(x\right)=x\left(x^2-2x+7\right)-1+x\left(x^2-2x-1\right)-1\)
\(f\left(x\right)+g\left(x\right)=x^3-2x^2+7x-1+x^3-2x^2-x-1\)
\(f\left(x\right)+g\left(x\right)=2x^3-4x^2+6x-2\)
b) 8x=0
=> x=0
=> Nghiệm đa thức f(x)-g(x)
c) Thay \(x=-\frac{3}{2}\)vào BT f(x)+g(x) ta được :
\(2.\left(-\frac{3}{2}\right)^3-4\left(-\frac{3}{2}\right)^2+6\left(-\frac{3}{2}\right)-2\)
\(=6,75+9-9-2\)
\(=4,75\)
#H
??
\(\hept{\begin{cases}2x^4\ge0\\x^2\ge0\end{cases}}\)\(\Rightarrow2x^4+x^2\ge0\)\(\Rightarrow2x^4+x^2+2\ge2>0\)
Dấu "=" khi x=0
Vậy đa thức đã cho không có nghiệm
2x4 + x2 + 2
Có : \(\hept{\begin{cases}2x^4\ge0\\x^2\ge0\end{cases}\forall x\Rightarrow}2x^4+x^2+2\ge2>0\forall x\)
=> Đa thức vô nghiệm
Ta có: x2 - x + 1 = x2 - 1/2.x - 1/2.x + 1/4 + 3/4 = x(x - 1/2) - 1/2(x - 1/2) + 3/4 = (x - 1/2)2 + 3/4
Do (x - 1/2)2 \(\ge\)với mọi x ; 3/4 > 0
=> (x - 1/2)2 + 3/4 > 0 với mọi x=> x2 - x + 1 > 0 với mọi x
=> đa thức x2 - x + 1 không có nghiệm