Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=1-\dfrac{1}{x+1}+1-\dfrac{1}{y+1}+1-\dfrac{1}{z+1}\)
\(P=3-\left(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\right)\)
Áp dụng bđt Cauchy-Schwarz dạng Engel ta có:
\(P\le3-\dfrac{\left(1+1+1\right)^2}{x+1+y+1+z+1}\le3-\dfrac{9}{1+3}=\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\) ( sửa đề )
\(\Leftrightarrow\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge9\)
\(\Leftrightarrow3+\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{x}{z}+\dfrac{z}{x}\ge9\)
Ta sẽ CM BĐT trên đúng bằng sử dụng Cô - Si , ta có :
\(\left\{{}\begin{matrix}\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}.\dfrac{y}{x}}=2\\\dfrac{y}{z}+\dfrac{z}{y}\ge2\sqrt{\dfrac{y}{z}.\dfrac{z}{y}}=2\\\dfrac{x}{z}+\dfrac{z}{x}\ge2\sqrt{\dfrac{x}{z}.\dfrac{z}{x}}=2\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{x}{z}+\dfrac{z}{x}\ge6\)
\(\Leftrightarrow3+\dfrac{x}{y}+\dfrac{y}{x}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{x}{z}+\dfrac{z}{x}\ge9\)
\(\Rightarrowđpcm.\)
\("="\Leftrightarrow x=y=z\)
Lời giải:Áp dụng BĐT Cauchy-Schwarz ta có:
$\frac{1}{2x+y+z}\leq \frac{1}{16}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)$
$\frac{1}{x+2y+z}\leq \frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)$
$\frac{1}{x+y+2z}\leq \frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}\right)$
Cộng theo vế và rút gọn thì:
$\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\leq \frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)$
Chào bạn
bạn nhân chéo lên rồi tách ra thì bạn sẽ có
1/x+1/y+1/z=1/x+y+z tương đương với (x+y)(y+z)(x+z)=0
Đến đây thì dễ rồi
\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\)
\(=x.\left(\dfrac{x}{y+z}+1-1\right)+y.\left(\dfrac{y}{x+z}+1-1\right)+z.\left(\dfrac{z}{x+y}+1-1\right)\)
\(=x.\left(\dfrac{x+y+z}{y+z}\right)+y.\left(\dfrac{x+y+z}{x+z}\right)+z.\left(\dfrac{x+y+z}{x+y}\right)-\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)-\left(x+y+z\right)=\left(x+y+z\right)-\left(x+y+z\right)=0\)
Áp dụng BĐT : \(\dfrac{1}{x}+\dfrac{1}{y}\) \(\geq \) \(\dfrac{4}{x+y}\) \(\Leftrightarrow\) \(\dfrac{1}{4}.\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\) \(\geq\) \(\dfrac{1}{x+y}\)
Ta có: \(\dfrac{1}{2x+y+z}\)=\(\dfrac{1}{\left(x+y\right)+\left(x+z\right)}\)\(\leq\)\(\dfrac{1}{4}.\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\)\(\leq\)\(\dfrac{1}{4}\left(\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{1}{4}\left(\dfrac{1}{x+z}\right)\right)\)=\(\dfrac{1}{16}\left(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)(1)
Chứng minh tương tự,ta có:
\(\dfrac{1}{x+2y+z}\) \(\leq\) \(\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}\right)\)(2)
\(\dfrac{1}{x+y+2z}\) \(\leq\) \(\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z}\right)\)(3)
Đặt: \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\) là VT
Cộng các BĐT(1),(2),(3) lại với nhau ta được:
VT \(\leq\)\(\dfrac{1}{16}\left(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}\right)+\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z}\right)\)
\(\Leftrightarrow\) VT \(\leq\) \(\dfrac{1}{16}\left(\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{4}{z}\right)\)=\(\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)=\(\dfrac{1}{4}.4=1\)
\(\Leftrightarrow\) \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\) \(\leq\) 1
Dấu = xảy ra khi x=y=z=\(\dfrac{3}{4}\)
Ta có: \(\dfrac{16}{2x+y+z}\le\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)
\(\Leftrightarrow\dfrac{1}{2x+y+z}\le\dfrac{1}{16}\left(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\left(1\right)\)
Tương tự ta có: \(\left\{{}\begin{matrix}\dfrac{1}{x+2y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}\right)\left(2\right)\\\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z}\right)\left(3\right)\end{matrix}\right.\)
Cộng (1), (2), (3) vế theo vế ta được:
\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le\dfrac{4}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{4.4}{16}=1\)
Dấu = xảy ra khi \(x=y=z=\dfrac{3}{4}\)
* Nếu x + y + z = 0
\(A=\left(1+\dfrac{y}{x}\right)\left(1+\dfrac{z}{y}\right)\left(1+\dfrac{x}{z}\right)\)
\(=\dfrac{x+y}{x}\cdot\dfrac{y+z}{y}\cdot\dfrac{z+x}{z}=\dfrac{\left(-z\right)}{x}\cdot\dfrac{\left(-x\right)}{y}\cdot\dfrac{\left(-y\right)}{z}=\dfrac{\left(-x\right)\left(-y\right)\left(-z\right)}{xyz}=-\dfrac{xyz}{xyz}=-1\)
* Nếu x + y + z khác 0
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x-y-z}{x}=\dfrac{y-x-z}{y}=\dfrac{-x-y+z}{z}=\dfrac{x-y-z+y-x-z-x-y+z}{x+y+z}=\dfrac{-x-y-z}{x+y+z}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x-y-z=-x\\y-x-z=-y\\-x-y+z=-z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y+z=2x\\z+x=2y\\x+y=2z\end{matrix}\right.\Rightarrow x=y=z\)
\(\Rightarrow A=\left(1+\dfrac{y}{x}\right)\left(1+\dfrac{z}{y}\right)\left(1+\dfrac{x}{z}\right)\)
\(=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2\cdot2\cdot2=8\)
Ta có : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)
Đặt \(Q=x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge x+y+z+\dfrac{9}{x+y+z}\)
\(=x+y+z+\dfrac{1}{x+y+z}+\dfrac{8}{x+y+z}\)
Áp dụng BĐT Cô - si có :
\(\left(x+y+z\right)+\dfrac{1}{x+y+z}\ge2\sqrt{\left(x+y+z\right)\cdot\dfrac{1}{x+y+z}}=2\)
Do \(x+y+z\le1\Rightarrow\dfrac{8}{x+y+z}\ge8\)
Do đó : \(Q\ge8+2=10\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)
\(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge x+y+z+\dfrac{9}{x+y+z}\)
\(VT\ge x+y+z+\dfrac{1}{x+y+z}+\dfrac{8}{x+y+z}\ge2\sqrt{\dfrac{x+y+z}{x+y+z}}+\dfrac{8}{1}=10\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)